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Aim of the course:

Propose simple while accurate analytical models for a variety of field-effect semiconductor devices.

Ideally:

These models must be physics based.

They can tolerate some approximations that must be justified and validated.

They can be implemented in electrical simulators to simulate IC’s ( Pspice - https://www.pspice.com/…).

What about Numerical simulations ? 

++: They are very important to predict with many details the devices characteristics.

- -: Can hardly give a synthetic understanding of the devices behavior.

- -: Cannot be used for hand calculations or IC’s simulations.

They are required to validate the analytical models (in addition to experiments).

Example:     Synopsys - https://www.synopsys.com/manufacturing/tcad.html

Sylvaco - https://silvaco.com/tcad/

Why Analytical and Compact Modelling.
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OUTLINE

I- Alternative modeling of the bulk MOSFET.

• Recalling basics of MOSFETs

• Another way to model MOSFETs

• Short Channel effects in MOS transistors.

II- Modelling the Double Gate FETs.

• The exact solution

• The charge based Model of the DG FET 

• Quantum Confinement in DG FET

• Including doping in DG FETs

VII- Modeling the High Electron Mobility FETs (HEMT).

• The energy band shape in AlGaAs HEMT 

heterostructures

• The concept of charge linearization in HEMT

• The III-Nitride AlGaN HEMT

V- The Junctionless Field Effect transistor.

• The simplest FET

• Pros and Cons of JL FETs

• Modelling the double gate JL FET

• Asymetric operation in DG JL FETs

• The Nanowire FET

VI- Ballistic transport in nanoscale transistors.

• What is ballistic transport ?

• The virtual source and fluxes

• Is the ballistic FET a vacuum tube ?

• Ultimate contact resistance

• The ‘molecular’ FET

VIII- Modeling biosensor Nanowires FET and Bio-

Sensors

• Basics of solid-electrolyte interaction

• Modeling ISFET Nanowires

• Simulations of ISFET Nanowires

IX- Modeling negative capacitance in multigate FETs 

(not sure yet).

III- The Gate All around FET

IV- Concept of equivalent parameters in arbitrary FETs.

• The equivalent channel thickness

• The equivalent gate capacitance



Optionnal :
Recalling basics of Semiconductor Physics

4Jean-Michel Sallese
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• A band = splitting of one or more atomic energy levels. 

• Number of states in a band = twice the number of atoms.

Depending on [valence electrons]:

• Partially filled bands(V or C): conductors

• Completely filled bands: 

• If EG/kT >>1, electrons cannot gain 

extra energy= insulators.

• If EG/kT ~1, electrons can gain extra 

energy= semiconductors.

Basics of SC physics – Bands
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• Wave function continuity at the crystal limits imposes discrete values for k:

 PNnk atoms = /2 

• This limits the representation in the `k space` from -/P to /P : The Brillouin zone 

Silicon: 

Indirect band gap

Gallium Arsenide: 

Direct band gap

• Energy versus the wave vector is 

represented in the first Brillouin 

zone of the reciprocal lattice.

L and X represent different 

directions in the cristal.

dk

dE1
Vk =


Carrier velocity 

at the state ‘k’

Basics of SC physics – Bands

P: crystal periodicity,  n: integer
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• How can we `recover` the simple ‘free electron’ description ?

• Noting that electrical and optical (‘visible’ range) properties of a semiconductor mainly depend 

on conduction and valence band extremas, we can develop the energy dependence E(k) up to 

the second order in k around the extrema k0 .

• This will define an ‘effective mass’ m* which is related to the curvature of the E(k) diagram.

The effective mass concept holds both for electrons and holes.
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• Energies are measured with respect to the extrema.

• The electronic properties of a cristal are implicitely hidden in the effective mass concept.

• In a periodic structure, electrons and holes can seem heavier or lighter than electrons in free space.

Basics of SC physics – Effective mass
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Basics of SC physics – Density of States

E

k

•Discretization of k vector in reciprocal space

E
dE Density of states

‘extension of a ‘state’: 2/NatomsPeriod

• Discrete values of the wave vector k will induce quantization of energies: 

- In 1D, a ‘k’ state occupies a ‘length’ of:  2/NatomsPeriod, or 2/ L

- In 3D, a ‘k’ state occupies a ‘volume’ of:  83/ Volume
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Basics of SC physics – Density of States

(these apply for each confined state. The energy E is then measured wrt the confined level)

• Example: the density of states at 100 meV above the conduction band in silicon (per m3 of silicon is ) ~ 2 1027

states / eV

•In a  cube of crystal of 100mm sides, for a 10 meV energy ‘window,’ , there will be 2 1013 states  that can be

occupied.
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• How electrons will be distributed on the available states ?
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- The Fermi-Dirac statistics gives the probability f(E) that an electron occupies a state of 

energy E depends on the temperature and on the Fermi Energy EF:

- If the electron density is low enough, i.e. E-EF>>kT, the 

distribution reverts to the Bolzmann statistics :

1

E

f(E)
EF

0.5

EC-EF >> kT

Semiconductor   

non-degenerated

EC-EF << kT

Semiconductor 

degenerated

(N type in this case)

Basics of SC physics – Statistics
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• Concerning holes, we obtain a similar relation considering that:

Prob (hole @ energy E) = 1 – Prob (electron @ energy E) 
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Basics of SC physics – Statistics

Non-degenerate

‘lightly doped’
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• Given the density of state and the probability that these are occupied allows in 

evaluating the total electron and hole densities. Electron density in the conduction 

band and hole density in the valence band are given by:
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• In case of a non-degenerate semiconductor, we obtain:

Where NC and NV represent the Effective Density of States for 

conduction and valence bands:

• For a fixed T°, the product n.p is invariant :

ni = intrinsic 

carrier density

Basics of SC physics – Density of states
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• Excess of default of carriers can be introduced by ‘impurities’ that have more (donor) or 

less (acceptor) valence electrons than the semiconductor atoms.

• In silicon, phosphorus gives an extra electron whereas boron generates a lack of 

electron, or equivalently bring an extra hole.
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• Assuming that each donor/acceptor generates a free electron/hole, we have:

For N type doping

This uniquely defines the Fermi energy once the doping density is known.

For P type doping

Basics of SC physics – Donors & acceptors
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• The intrinsic energy EFi corresponds to the Fermi energy that satisfies n=p=ni:
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• Electrons and holes densities take a very simple form relaing on ni and EFi:
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• On the other hand, introducing doping impurities will affect electron and hole densities; 

and so it will change the Fermi energy. In non-degenerate semiconductor, we have:
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for N type  (ex: Phosphorous in Si)

for P type (ex: Boron in Si)

Basics of SC physics – Intrinsic Fermi energy



Jean-Michel SALLESE Slide 15

• Under equilibrium, non-uniform doping induces bending of conduction and valence 

bands, while EF remains constant.
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( ) ( ) qxEx Fi−=Defining the ‘band bending’ potential as:

and the Fermi level potential as: 

• Electron and hole densities are then given by: 
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qTkUT =where UT is the thermodynamic potential (25 meV @ RT):

Basics of SC physics – Potentials
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• In order to represent a non equilibrium situation (no external potential V), Fermi levels 

can have different values for electrons and holes at the same coordinate.

• This occurs when electrons and holes exceed their equilibrium densities subsequent to an 

external exitation, such as light absorption.

• In this case, we can define an electron EFn and hole EFp Fermi levels and 

corresponding potentials such that:
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(as we will see, applying an external potential V will also modify the 

Fermi level)
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Basics of SC physics – Pseudo Fermi energy
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• Drift current due to an electric field:
( ) ( ) ( )rErnqrJ edrifte


−= m_

( ) ( )rnDqrJ ediffe −=


_
• Drift current due to a gradient:

( ) ( ) ( )rJrJrJ diffedriftee
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__ += ( ) ( ) ( )rJrJrJ diffhdrifthh
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• The current density is then the sum of the two components:

( ) ( ) ( )rJrJrJ heTotal


+=

• The total current density is the sum of electron and hole current densities:

( ) ( ) ( )rErpqrJ hdrifth


−= m_

( ) ( )rpDqrJ hdiffh =


_

Note that other approaches exist. However, DD is both simple and accurate enough.

Basics of SC physics – Drift-Diffusion transport

Where    q  = - 1.6 10-19 C
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• Assuming Boltzmann statistics and noting that :

we obtain: 

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In addition:

and

Interestingly, if Fermi potentials are constant, there will be not net current.

Basics of SC physics – Drift-Diffusion transport

(drift – diffusion)
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• For a given volume, incoming and outcoming fluxes must be compensated by  

Generation-Recombination processes.
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Derivating ‘Drift-Diffusion’ gives:

The continuity equation derived from Drift-Diffusion is given by:

Basics of SC physics – The continuity equation
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• Bandgap (indirect) : Eg(300 K)~1,12 eV

• Effective density of states (conduction band) : 3,22 · 1019 cm–3

• Effective density of states (valence band) : 1,83 · 1019 cm–3

• Intrinsic carrier density ni (300K) : 1,3 · 1010 cm–3

• Intrinsic mobility of electrons (300K) ~ 1400 cm2/Vs

• Intrinsic mobility of holes (300K) ~ 500 cm2/Vs

• Indirect band gap of Si: 1.12 eV

e0 : 8.8 10-12 F/m

er SiO2 : 3.9

er Si : 11.9

k (Boltzmann) = 1.38 10-23 J/K

Some silicon parameters



I- Alternative modeling of the bulk 
MOSFET.
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Recalling basics of MOSFETs

Traditional modelling
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• Basic structure of a MOSFET. Drain (n+)Source (n+)
Gate

Substrate (p type)

LG

Insulator (SiO2)

Channel 

Ec

Ei

Ev

EF

EFM

VG<VFB

Hole accumulation

P type Si

SiO2

Metal

EFM

VG=VFB

Neutral SC
P type Si

SiO2

Metal

• Depending on the gate potential with respect to the substrate, there are 3 modes of operation:

EFM

VG>VFB

Electron enhancement: 

Inversion

P type Si
SiO2

Metal

Conductive

channel

• The Flat Band voltage VFB depends on the work function differences at the gate and substrate 

contacts, as well as on fixed charge densities in the SiO2. ! VFB is not the threshold voltage VT  !

y

x

The MOSFET structure
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• Potentials drop inside a MOS structure.

• From Boltzmann statistics:

S is the surface potential =

the potential drop inside the 

semiconductor.

- If VG<VFB, then S < 0 

(accumulation)

-If VG>VFB, then S > 0 

(depletion inversion.)
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equation:

p0 =NA: Total acceptor ionization

(n0 , p0)

Gradual channel approximation:

2D electrostatics is decomposed

in  2 x 1D problem

000 =−+ pNn A
• Neutrality in the substrate imposes: ( ) ( )  ( ) ( )00 pypnynqy −−−=

The MOSFET model
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Assuming that po~NA

And noting that
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After some manipulations, and since the electric field and  vanish in the neutral region:
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According to the definition of the Fermi potential, we can write: 

We can multiply the first relation by : ( ) dyyd

The MOS capacitor

Ei

EF
SiO2

F

The gradual channel approximation is adopted to neglect the transverse 

electric field.
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pot. Fermi=
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Strong inversion

~exp(S/2UT)

Accumulation

~exp(-S/2UT)
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Unlike an ideal planar

capacitor, the charge 

stored in the 

semiconductor doesn’t

vary linearly with the 

electrostatic potential.

Charge density in MOS capacitor
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Gauss law: The flux of E across a closed surface  = QSC/e
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• The gate potential satisfies:

• In depletion-inversion mode, this simplifies into:
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• 2 contributions under depletion-inversion mode: 

And therefore the Inversion 

charge will be : 

body factor

flat band voltage, a process 

dependent parameter.
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The threshold voltage, Weak and Strong inversion

• Derivation of the threshold voltage: 

VG

Q’I (lin)

Strong 

inversion

VT

Weak 

inversion

( )
FFFBGT 22VVV  ++==

 SIbut  0Q
I

In a MOSFET, the threshold voltage 

will not only depend on the contact 

workfunctions, but also on the 

semiconductor doping. 

• In strong inversion, the surface potential 
reaches an asymptotic value ~2F + few UT

S S

Dep WI MI SI

F

2F

2F

+few UT

Q’i

Q’SC

Q’D ~ S asymptote 

VG

S ~VG

Q VG

Q (Log scale)

T

G

Un

V

ewi


~

( )TGox VVCSI −~

• Asymptotic expressions for 
Weak & Strong inversion.

• No such approximation for 
Moderate inversion !

Subthreshold slope:

(1/nUT)/decade
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The MOSFET: including the drain voltage

• Source and drain contacts will only affect the Fermi potential of electrons (P type sub.).

where V @source = VS and V @drain = VD

( )
( ) ( )








 −−
=

T

F
A

MOSFET

U

xV2yx
Nyxn

 ,
exp,( )

( )







 −
=

T

F
A

MOSCAP

U

2yx
Nyxn

 ,
exp,

• In inversion, the depletion and inversion charges are then given by:

SAB NqQ e −−= 2'

















−+−=

−−

SS
TU

VFS

TAI eUNqQ e

 2

' 2

Implicit dependence of 

QB on V through QI

Explicit dependence of 

QI on V

Q
S

I
(C

/c
m

2 )

10-4

10-5

10-6

10-7

10-8

0 0.2 0.4 0.6 0.8-0.2 1

NA=4 1015 cm-3

S (V)

V

Acc.

Dep.

WI

SI
• Changing the potential of the (N) source will mainly 

affect the concentration of electrons in the channel in 

strong inversion (for P type substrate).

• An increase in V will decrease the inversion charge 

density: at the origin for the saturation effect in 

MOSFETs (increase in VD).
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The channel current

• Accounting for drift and diffusion currents in a 1D model, we have:

( )
( )














+−=

dx

dQ
D

dx

d
QWI SI

n
S

nSI


m

'
'

( ) 







+








−−−−=

D

S
In

D

S
S

D

S
S

D

SSFBGnOX QDVVC
L

W
I '2/32'

3

2

2

1
m

• Given QI(S), after integration from source to drain and noting that I is constant with x:

( ) 







+








−−−−=

X

S
In

X

S
S

X

S
S

X

SSFBGnOX QDVVC
x

W
I '2/32'

3

2

2

1
m

• The current only depends on source and drain surface potentials (or charges) which are 

respectively a function of (VG,VS) and (VG, VD) (no longer true with ‘history effects,i.e. ferroelectrics).

• Having calculated the current, we can also integrate from the source to any x:
( )xS

( )xQI

( )xV

Drain (n+)Source (n+)
Gate

Substrate (p type)

Depletion

Source Drain

V(x)

x
VDS=0

Increasing VD

dx

dV
WQI I −= mor
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The channel current

• Typical I-V MOSFET characteristics (assuming VS=0)

VDS

ID

In
cr

ea
si

ng
 V

G

VD= VD_sat

Saturation

non 

saturation

VG

Subthreshold slope:

(1/nUT)/decade

I D
 (L

og
 s

ca
le

)

IDiffusion

IDrift

ID versus VG in Log scale ID versus VD in Lin scale

T

G

Un

V

e


~• In weak inversion (& sat), the current

( )2
TG VV −~• In strong inversion, saturation

• In strong inversion, conduction 







+

−
 D

TG
D V

n

VV
2V~
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A new approach to model MOSFETs
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Charge Linearization Concept.

◼ Potential drop and charge linearization:

'

'

'

'

OX

I

OX

B
SFBG

C

Q

C

Q
VV −−+= 

EC

EC

EV

EV

Gate

Substrate (NA)ox.

qYS

Q’i

V
O

X

Q’BS

ox

A

ox

B

C

Nq2

C

Q


e





−

''

' '

'

OX

I
SSFBG

C

Q
VV −Y++= 

(VOX)
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0.5

1.0

1.5

2.0

2.5
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Surface potential (V)

V
G
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=0.7

2 =0.9
F

V
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V
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=3

pinch-off  surface 

potential :

YP(VG)=YS(Qi=0)
slope: n

PΨ

Γ
n


+

2
1Slope factor:

F=UT Ln(NA/ni )

~0.4V for 1017 cm-3

(the substrate is the 

reference )

The pinch-off surface potential

depends on VG

The pinch-off surface potential and slope

factor define a linear Q-VG characteristic













−+

−
−−=

2

1

4

1

Γ

VV
ΓVVΨ
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◼ Maintaining VG constant, we obtain:
ox

D

C

C
1n += CD: depletion capacitance

◼ The dependence of QI with YS being almost linear for fixed VG, we have:

Note that this approximation relies ‘only’ on the electrostatics

of the gate-dielectric system. 

Charge Linearization Concept.

( )PS'
ox

'
i ΨΨn

C

Q
−=

PF ΨΦ2

Γ
1n

+
+

Where n is the 

slope factor :

F=UT Ln(NA/ni)

~(0.4V for 1017 cm-3)

◼ The slope factor can also be obtained from the equivalent gate capacitance:

( )PS'

ox

'

i ΨΨn
C

Q
−=

oxoxDox

1

S
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S

I

G
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G
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1
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d

dQ
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dQ

dQ

dV

dQ

d

dQ

dV
+

−
=+










−

−
=+=

−


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Charge Linearization Concept.

( ) ( )

T

ch

T

FGP

T
'
ox

'
i

T

GP

T
'
ox

'
i

T
'
ox
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Φ2VΨ
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
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


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
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−




−

◼ Then, we still have to see how this will impact the relation existing between QI and YS, 

which is now governed by the semiconductor.














−




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This represents a new relation  between the mobile charge density and potentials.
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The Pinch-Off Voltage

◼ We can show that in strong inversion, the source and drain potentials are linked to the
surface potential through:

( )S,Dpox

SI
'
i@D,S VVCnQ −−

F
DS

s

SI

DS 2V  − ,
,

Therefore, in strong inversion, the charge density at source and drain can also be written in
terms of the source and drain potentials.

     FPDS

LinSI

FPF
DS

s'
ox

'
DS

2ΨV2Ψ2Ψ
Cn

Q
 −−−−−=


,

,
,,

~

Based on this relation, we define a ‘pinch-off’ voltage VP as: FPP 2ΨV −=

As for P , VP will only depend on the gate voltage.

VP is the gate potential ‘seen’ from the channel.

In strong inversion, the relation between charges and potentials can then be written as:
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The Pinch-Off Voltage

◼ A first order Taylor expansion of the VP-VG relation gives a useful

approximation of the pinch-off voltage for ‘hand calculations’.

n

VV
V 0TG

p

−


The pinch-off voltage and the 

slope factor can be measured !

VP and n can be 

measured ! 

PF VΦ

Γ
n

+
+

22
1

Note that n is also the slope of the Log (ID) vs VG characteristic in weak inversion (VP~0) that equals
1/n UT . It varies between 1.1 (strong inversion) up to 1.6 (weak inversion).
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What about weak-inversion ?

◼ ‘n’ is also the slope of the Log (ID) vs VG

characteristic in weak inversion that equals 1/nUT

◼ n varies between 1.1 (strong inversion) up to 1.6 

(weak inversion).

T

DSP

U

VV

ToxDS eUCn2Q

,

,

−

−=

VG

L
o

g
 (

I D
)

Slope = 1/nUT

As for strong inversion, we can show that in weak inversion, charge densities at 

source and drain are still a function of the difference between VP and VS or VD:

T

DSP

Tox

DS

Tox

DS

U

VV

UCn2

Q
2

UCn2

Q
Ln

,,, −
=


−













−

Without demonstration, the general relation between charges and potentials is :
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( ) ( )2 2' '
P G P G Fi i ch
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Some more steps… 

Concerning the Log function, what matters is to be accurate when Q<<1
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Drain Current & normalization.

◼ Charge linearization can also be used for the current.

◼ Adopting the drift-diffusion transport model:

)(
dx
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d
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T
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Since Id is constant along the channel, integration from S to D gives:

We define a specific current ISP

and specific charge density QSP 

that depend only on the 

technological parameters: TOXSP UnCQ 2=

The current can be written:
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Drain Current & normalization.

◼ The MOSFET can be modelled with only 2 normalized relations:

( ) chpii vvq2qLn −+

( ) ( )D
2
DS

2
S qqqqi +−+=

◼ For the current

◼ For the charges

( ) 2S S p SLn q q v v+   −

( ) 2D D p DLn q q v v+   −

Sq

Dq
i
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Drain Current & transconductances.

◼ Since the inversion charge densities at source and drain are always given by a general

form involving the difference between VP and the source and drain potentials VS and VD:

The current takes a simple form:

◼ This has implications in small signal analysis:

◼ A variation dV of VP is equivalent to a simultaneous variation -dV of VDand VS

◼ In saturation, gmd~0 and we obtain:

( )DPD VVFQ −=

( ) ( )DPSPD VVHVVHI −−−=
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◼ Therefore, in strong inversion, VDSAT is almost VP.

◼ Note that VD=VG ensures saturation since VD(=VG) > VP.

The Inversion Factor IF.

In saturation, the drain current doesn’t change any

more when increasing the drain voltage above VDSAT,

which means a negligible mobile charge at the drain:

VDVDSAT~VPVS
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• By definition, the inversion factor IF is the

normalized current of the device operating

in saturation: SP
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The gms/ID Invariant.

◼ An equivalent formulation of the current is given by:

◼ Then, from the definition of the source transconductance, we obtain:

◼ In addition, in saturation, QD ~0 and QS is related to the Inversion Factor:

dx

dV
QWI ch

iD )( −= m  
−

=
D

S

V

V ox

i
D dV

C

Q
I 










 −
=









 −
=

−
=




−=

Tox

S

T

S

Tox

S
Tox

ox

S

S

D
ms

UnC2

Q

U

I

UnC2

Q
U

L

W
Cn2

C

Q

V

I
g m

Integration along the channel






























−














=

TOX

S

2

TOX

S
SP

SAT

D
UnC2

Q

UnC2

Q
II

2

1IF41

UnC2

Q SAT

TOX

S −+
=














−



IDESA - IC Design Skills for Advanced 

DSM Technologies

Jean-Michel Sallese - EPFL

Jean-Michel SALLESE Slide 45

The gms/ID Invariant.

◼ In saturation, the source transconductance-to-current ration is only dependent

on the inversion factor IF, and not on the device parameters:
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The definition of ISP (the 

current normalization

factor) is consistent with

the transition from weak

to strong inversion, when

the MOSFET operates in 

saturation.
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Identifying velocity saturation on gms/ID

IF

1

I

WCV

I

g

SP

OXSat
SATSI

D

m 
,

.

◼ Assuming strong inversion and saturation, the drain current is given by: 

◼ At high VD, velocity saturation will limit the current:
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Velocity saturation deteriorates gms/ID

characteristics.

- If  Vsat=105 ms-1 & m=0.05 m2V-1s-1
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What about multigate Ultra Thin Body and Bulk SOI ?

Silicon thickness : 7 nm

Front Gate insulator : High K , equivalent to 1.3 nm SiO2

Back Gate insulator : 25 nm SiO2

Independent front and back gates

Modern technologies are multigate (see next chapters)

Among them is the UTBB SOI MOSFET (ST Micro)

SOI = Silicon On Insulator

Used in more advanced technologies

SiO2 buried oxide (100-10 nm)

Si active layer

Si substrate

The SiO2 buried oxide can serve as a gate insulator,

while the Si substrate is the gate electrode

When both the SiO2 buried oxide and the Si active

layer are in the nm range, the device can be

controlled by 2 independent gates

https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI.html
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The ‘Front Channel’ threshold voltage depends on the ‘back gate’ bias.
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The current depends on Back and Front Gate Voltages

Multiple Threshold VT is interesting for design optimization and flexibility:

- Standart-VT circuits,

- Low VT device for high-speed circuits
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❑ Empirical determination of n & ISP in UTBB SOI

Determination of the specific curent and slope factor.
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SI-WI asymptotes

n gm/ID UT = 1

Front Gate Sweep, Back Gate grounded

Transposing the Inversion Coefficient in UTBB SOI
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After normalization, the invariance gm/I versus I, based on experiments, is 

supported for different back gate biases.

Transposing the Inversion Coefficient in UTBB SOI
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❑ ‘ Weak, Moderate and Strong Inversion in UTBB SOI

The ‘mode of operation’ is easily identified and becomes a concept independent of the gate voltages, 

only the channel current matters.

Transposing the Inversion Coefficient in UTBB SOI
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What about Organic FETs ?

• Organic electronic technology is less mature than silicon technology. 

Devices are prone to have a quite large variability: makes circuit design more challenging.

• Using the ‘MOSFET’ normalization for the current gives a more reliable representation in 

terms of gm/I versus an ‘estimated’ normalization current.

Quite large variability of mobility 

and threshold voltages
gm/I   versus    I/Isp

Possibly impacted by leakage currents
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Short channel effects in MOSFETs
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Constant Field Scaling

◼ Scaling = change in physical parameters so that

the scaled device has a similar behavior.

◼ A large FET is scaled down by a factor a (> 1)

leading to a smaller FET that is expected to 

have similar behavior.

◼ Reducing voltages and dimensions by a and 

increasing the doping and charge densities by a 

leads to the same electric field distribution : 

constant field scaling

Time delay (CV/I) decreases in proportion to 1/a

and density in proportion to a2

If Constant field scaling

S

TOX

wiring

gate

D

W

LG
XD

Sub. Doping: NA

V

S

TOX /a

wiring

gate

D

W/a

LG/a

XD/a

Sub. Doping: aNA

V/a

A large FET is scaled down by a factor a to produce a smaller FET with

similar behaviour. When all voltages and dimensions are reduced by a , 

and when the doping and charge densities are increased by the same factor, 

the electric field inside the FET remains the same as in the original device. 

This is called constant field scaling. It results in circuit speed increasing in 

proportion to 1/a and circuit density in a2.
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◼ Scaling (constant field scaling – a > 1)

Dimensions, LG, W, TOX 1/a

Area 1/a2

Capacitances 1/a

Capacitances per unit area a

Devices per unit of chip area a2

Charges 1/a2

Doping concentrations a

Voltages … and ideally also VT 1/a

Bias currents 1/a

Gate delay 1/a

Power dissipation 1/a2

Transistor transit time 1/a2

Constant Field Scaling
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◼ Limitations are mainly due to:

◼ Nonscaling of the built-in potential (& junctions).

◼ Non scaling of the subthreshold slope. 

◼ Non scaling of the threshold voltage.

◼ Quantum mechanical tunneling currents (gate to channel and source-dain). 

◼ Discrete nature of dopants in nm scaled devices: matching issues.

◼ Lowering of the nominal voltage down to 1 volt will also reduce the available dynamic

range, pushing the devices to operate in weak-moderate inversion.

◼ Then, while scaling of CMOS technology improves digital applications, this evolution is

rather detrimental for analog design since it introduces non-ideal characteristics.

Degradation of the OFF state current.

Limits to Scaling
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◼ Mobility is the key parameter that directly impacts the current density in a MOSFET. But 
moving to more advanced technologies may also degrade this quantity. 

◼ Vertical and lateral electric fields alter the mobility in the channel. 

◼ With downscaling of the MOSFET, even though the supply voltage is decreased, electric 
fields are increased in strong inv./saturation.

◼ Causes to mobility reduction due to the vertical field Ez:

◼ Coulomb scattering mc: interaction with ionized impurities (at low field, high doping)

◼ Phonon scattering mph : interaction with lattice vibrations (at medium field)

◼ Surface roughness mrs : roughness of the Si-SiO2 interface (at high field)

Mobility Reduction

z
x

EZ (VG, VDS)

EX (VDS, VG) Mobility is then

voltage and position 

dependent

Mobility reduction and velocity saturation will deeply affect I-V characteristics 

and introduce additional distortion. 

Mobility will also affect charges, and so will impact the transcapacitances (~ 

second order effect).

There are mainly three different scattering mechanisms that affect the mobility.

All these scattering mechanisms are sensitive to the local electric field, and in 

particular to the vertical electric field when considering the non saturated 

region. 

Note that the vertical field is decreased from source to drain, whereas the 

longitudinal field increases. 



Jean-Michel SALLESE Slide 58

Mobility Reduction

◼ Mobility reduction due to the vertical field (when Ex << Ez ):
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◼ Low longitudinal field (EX) mobility has 3 contributions:

These are combined through Mathiessen’s rule:

phsrceff

1111

mmmm
++=

– The effect of vertical electric field is accounted through an 

effective field Eeff that accounts for the  spatial distribution of 

inversion and depletion charges.

Coulomb 
scattering

Surface scattering

Phonon scattering

meff

An effective vertical electric field governs the surface carrier mobility. It 

represents an average electric field that accounts for inversion and depletion 

charges. Except for the Coulomb mobility that increases with increasing 

Electric field, other contributions tend to decrease it. 

Therefore, mobility depends both on gate and drain voltage.

At high electric fields the surface roughness scattering is the main cause to 

mobility degradation.

Since Eeff increases with scaling, we expect that the mobility will decrease: 

surface roughness scattering mechanims should be dominant in advanced 

CMOS devices.
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Drain Induced Barrier Lowering (DIBL)

◼ In short channel devices, the longitudinal electric field (~VDS) cannot be always neglected

with respect to the normal component (~VG), particularly in weak inversion.

◼ Electrostatic solution relies upon a quasi 2D description of the channel
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In weak inversion, short channel transistors are significantly affected by a high drain voltage.

Reduction of DIBL requires thinner gate oxides and higher substrate doping.

where L0 is a characteristic length:

DIBL lowers the surface potential in WI by DS.

This can be seen as a decrease in VT0 with VDS &VG:
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Whereas in long channel devices the subthreshold current becomes 

independent of VD as soon as  it exceeds 4 UT, for short channel ID will 

continue to increase with VD in weak inversion

This is due to the control of. the surface potential by the drain through a 2D 

effect since the lateral electric field can no longer be neglected.

These curves represent the surface potential along the channel calculated in 

weak inversion, both for a long and a short channel MOSFET.

In strong inversion, long and short channel surface potentials have almost the 

same spatial variation. This is no longer true in weak inversion.

It is found that DIBL is governed by a Characteristic Length: when the channel 

length is much higher than Lo, the effect of DIBL can be neglected.

.
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Drain Induced Barrier Lowering (DIBL)

◼ Lowering of the surface potential with VD increases the current for short channel devices.

◼ Degradation of the output conductance gds , maximum voltage gain gm/gds and Ion/Ioff.
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DIBL is one of the most important short channel effect in weak inversion
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115mV/dec

DYS(VD) ~ VD DID ~ exp(aVD) Ln(DID) ~ aVD

( Degradation of Slope below the threshold)

In weak inversion, the surface potential of long channel MOFET’s is almost 

independent of VD when VD >3UT.

In contrast, for short devices the surface potential will also depends on VD : 

the maximum barrier seen from the source is lowered as VD is increased, 

leading to the DIBL effect. This shift is almost linear with VD. 

Since in weak inversion the current depends exponentially on this shift, IOFF

will be degraded at high VD. 

To suppress source-drain leakage current, higher channel dopings are 

required. However, this is hardly compatible with high performances since it 

lowers mobility, enhances impact ionization and increases the threshold 

voltage (reducing the available overdrive voltage).
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Illustration of SCE 

Short 
channel

DIBL
VT(VG)

VG

Subth. Slope
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Vel. Sat.
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VD

Early voltage

Motivation for new architectures.

In weak inversion, the surface potential of long channel MOFET’s is almost 

independent of VD when VD >3UT.

In contrast, for short devices the surface potential will also depends on VD : 

the maximum barrier seen from the source is lowered as VD is increased, 

leading to the DIBL effect. This shift is almost linear with VD. 

Since in weak inversion the current depends exponentially on this shift, IOFF

will be degraded at high VD. 

To suppress source-drain leakage current, higher channel dopings are 

required. However, this is hardly compatible with high performances since it 

lowers mobility, enhances impact ionization and increases the threshold 

voltage (reducing the available overdrive voltage).



II- Modelling the Double Gate 
FETs.

63Jean-Michel Sallese



Jean-Michel SALLESE Slide 64

◼ Below 100 nm , bulk MOSFETs 

are difficult to control from the 

electrostatic point of view: 

DIBL, high WI slope

◼ Degradation of the Off state 

current, degradation of the 

dynamics, decrease in the 

current density.

◼ Advantages of double gate FETs:

◼ Better control from the gate

◼ Almost ideal subthreshold slope ~ 60 
mV/decade

◼ Undoped silicon ‘body, avoiding
induced random dopant fluctuations, 
meaning ‘less channel irregularities’ 
and better device matching.

GATE

SOURCE DRAIN

SILICON 

SUBSTRATE

DG MOSFETBulk MOSFET

Why Double Gate MOSFETs ?
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Different situations in a DG MOSFET 

Depending on the potentials applied on the gates, there are different situations.

Sioxide

G1 G2

VG1=VG2 

@ flat band

~ almost no electrons

VG1=VG2 

‘strong 

inversion’

VG1>VG2 

‘weak 

inversion’

VG1>VG2 

‘strong 

inversion’

EI

Symmetric operation Asymmetric operation

[electrons]

Not only non equal gate voltages will generate asymmetry. A difference in work functions and/or 

in gate oxide capacitances will also impact the symmetry.
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The electrostatic solution in symmetric DG

Analytical solution for charges and current in the DG MOSFET.

- Main assumptions are:

• Ideal 2 D structure .

• Quantum effects ignored.

• Boltzmann statistics in combination with Poisson equation (non degenerate) 
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The exact solution
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The electrostatic solution in symmetric DG
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• Poisson equation (n type channel, holes neglected):
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• Integrating (symmetric solution):
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(for x > 0)

(0) is the ‘potential’ at the center.

• Likewise for the bulk MOSFET, the electric field is related to the potential drop (x). 

• However, unlike the MOSFET where the electric field vanishes at infinity (and so for the potential), 

giving only (x) will not determine E(x)…something is missing.
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The electrostatic solution : ‘detailed’ derivation
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Poisson equation (n type channel, holes

can be neglected. EF is constant, VDS=0):
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(0) will represent the ‘potential’ at the center of the silicon film.

Can we use the same ‘trick’ as in MOSFET’s ? Noting that:
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constant !

Solving this differential equation requires special care…the type of solution will depend on C.

We need to make 2 changes of variables: ( ) ( )( )TUxψxz exp= ( ) ( ) Cxzxf +=

And we finally have to evaluate a primitive of the form: df
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The electrostatic solution in symmetric DG
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• Finally, the symmetry of the system with respect to x=o imposes x0=0 :

• Setting x=TSI/2 gives the potential at the channel interface (surface potential):

So far, the solution is for the undoped silicon layer.

The gate also imposes a condition through capacitive coupling:

From the continuity of the displacement vector at the interface 

(no sheet charges), we must satisfy: eox Eox=eSI ESI
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The electrostatic solution in symmetric DG

• Given the surface potential, these electric fields are readily obtained:

We end up with two relations and 2 unknowns, (0) and S. 

The system can then be solved for any gate voltage (but it must be consistent with electrons

enhancement in the silicon film)

( )

T
U

0

T
U

ψ

isiSIsi ee
S

nkT2E



ee −=− ( note that electric fields ‘are’ <0 for x>0 )

ox

SG
oxoxox

T

V
E


ee

−D−
=−

( )

T
U

0

T
U

ψ

isi
ox

SG
ox ee

S

nkT2
T

V



e


e −=
−D−



D is the work function difference between the gate electrode & the 

silicon. Its value is 0 for mid-gap electrodes, -EG/2q for N polygate, 

and EG/2q for P polygate 

( )

( )





































−= 



2

T

U2

nq
U20 Si

Tsi

iT
U2

0

TS e
e





cosln

and



Jean-Michel SALLESE Slide 72

The electrostatic solution in symmetric DG

The total mobile charge density integrated

across the silicon thickness, is obtained from

the electric field at the 2 Si/SiO2 interfaces:

( )
T

Ux

i enn


=

In contrast to the bulk MOSFET where

mobile charges are located at the Si/SiO2

interface, carriers spread inside the 

silicon layer in DG MOSFET, leading to 

‘volume inversion’.

This is more pronounced at low

concentrations (‘weak inversion’).
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• Example of potential and electron density variations in the silicon for different gate potential.
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The electrostatic solution in symmetric DG

2 regions of operation:

- Exponential dependence at ‘low’ VG

- Linear dependence at ‘high’ VG

- Low VG: neglecting the mobile charge, S follows the gate voltage:

Bands move as a whole and the mobile concentration is almost uniform: volume inversion

The surface potential S still increases with VG, but its 

value is almost independent of TSI.

( )  D− GS V0

- High VG: (0) reaches an asymptotic value since the cos function must be >0
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(0) and YS are decoupled: no more volume inversion: the 

mobile charge @ Si/SiO2 interface screens the gate electric field.
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The electrostatic solution in symmetric DG

2 regions of operation:

- Exponential dependence at ‘low’ VG

- Linear dependence at ‘high’ VG

- Low VG: neglecting the mobile charge, S follows the gate voltage:

Bands move as a whole and the mobile concentration is almost uniform: volume inversion

The surface potential S still increases with VG, but its

value is almost independent of TSI.

( )  D− GS V0

- High VG: (0) reaches an asymptotic value since the cos function must be >0
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Current modelling of the DG MOSFET @ VDS#0

• So far, we have derived the electrostatic solution of the DG MOSFET when VDS=0. 

This approach will serve as a basis to develop analytical expressions of the current flowing

through the device when VDS#0.

• Neglecting the ‘source to drain’ electric field, Poisson equation can be rewritten:

V(y): Electron quasi Fermi 

potential @ y

−q0(y)

x
0
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Fermi level -qV(y)

Cross section @ y

Electron quasi 

Fermi energy

The potential V(y) varies from source (V=VS) to drain 

(V=VD), but keeps a constant value in the x direction for 

a given y: Gradual channel approximation.
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Current modelling of the DG MOSFET @ VDS#0

The mobile charge density per unit area is obtained from the electric field @ SiO2/Si interfaces:
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Or equivalently in terms of 0:
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The mobile charge density becomes a simple function of a(y): 



Jean-Michel SALLESE Slide 77

Introducing the variable a(y), the drain current can be rewritten as:

Current modelling of the DG MOSFET @ VDS#0
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The total current, including drift and diffusion components, is still given by the relation:
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… but we still have to link V(y) with a(y), or equivalently with o(y)…
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Current modelling of the DG MOSFET @ VDS#0

Derivating V(y) versus a(y) gives:
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The integral of                                       over a(y) only depends on the value of a(y) at the 

limits which can be evaluated from VG, VS and VD. 

The current will only depend on source and drain nodes, just like for the bulk MOSFET. 
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We can now calculate the current integral. The final result is:

At this point, we can note that such a relation will implicitly provide the values of a(y) at the 

source and drain once VG, VD and VS are known. 
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Current modelling of the DG MOSFET @ VDS#0

Comparison with 2D numerical simulations confirms the validity of the assumptions

ID versus VG

WI SI

MI

Likewise for the bulk MOSFET, we can

identify different regimes that correspong to 
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Current modelling of the DG MOSFET @ VDS#0

Asymptotic relations.

In that case, the dominant term in the charge-potential and 

current-a(S,D) relations comes from the tangent function. 
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• ‘Strong Inversion’: Remember that when the gate voltage exceeds a certain value (which

would correspond to a threshold voltage not yet defined), we found the following condition:
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Current modelling of the DG MOSFET @ VDS#0

Asymptotic relations.

• ‘Weak Inversion’: In that case, the parameter a(y) evaluated at source and drain contacts 

is very small. Then, the Log term will dominate in the charge-potential relation:

Still very close to bulk MOSFET !  However, in weak inversion even though the current is

independent of COX , it clearly depends on TSI : volume inversion
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• Finally, the drain current in weak inversion can be expressed in terms of 

applied potentials:
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The charge-based model of the double-gate FET
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TEM image of an FD-SOI transistor

ultra-thin body and BOX (UTBB) FD-SOI CMOS,

28nm node with an high-k dielectric with an 1.1 nm equivalent oxide thickness for the 
front-gate oxide and with an ultra-thin (7 nm) conduction film positioned on top of a 25 
nm BOX insulation layer.
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Charge based model of DG FETs: Charges

• The model presented so far requires tedious iterative solutions and fails at identifying key

parameters. We propose to develop an approximate solution that will lead to very compact 

formulations of all electrical quantities. 

• Remember that, after integrating Poisson equation, we obtained the electric field across 

the silicon film:

Where C1(y) is the integration constant that was assigned to                  in the former approach… 

but that we aim at keeping undetermined at this stage of the derivation.
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In addition, the charge on the gate is also linked to the surface potential from electrostatics:

( )
( )

OX

G
SFBG

C

yQ
yVV =−− 

( )

si

GSi yQ

2

T
E

e
=









( ) ( )y2Ty SiSS , =



Jean-Michel SALLESE Slide 85

Charge based model of DG FETs : Charges

• An implicit relation of the charge density on each gate is obtained once C1 is known :

The integration constant C1(y) will then have a negligible impact on the charge density 

above the threshold, where the logarithmic term is negligible. Since C1(y) is representative 

of the electrostatic coupling between the gates, we expect such a coupling to be relatively 

small above the threshold. 

Conversely, the situation is totally different below the threshold since the logarithmic term 

dominates, implying that a rather strong coupling should now occur between the two gates:

‘volume inversion’.
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Charge based model of DG FETs : Charges

• Finding C1 requires a ‘trick’….

We start from (if x>0): 

We obtain a relation where the integration constant C1(y) and QG are correlated….

….but C1(y) is important only in weak inversion …
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Rearranging the solution

Imposed by symmetry 

We recognize ‘ E(x) ‘
setting x to TSI /2 and noting that 
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Charge based model of DG FETs : Charges

• Assuming QG small enough, a first order approximation is obtained :

The integration constant 

takes a simple form 
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• The charge density on each gate can be computed from the difference between the gate 

and channel potentials: 
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Charge based model of DG FETs : Normalization

• Charges can be normalized:  q = Q / 4 COX UT

• Potentials can be normalized: v = V / UT

qint is intrinsic normalized charge density per unit surface:
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• The Threshold voltage in symmetric DG MOSFET’s is obtained from the strong 

inversion asymptote that cancels the mobile charge:

• The relation between Charges and Potentials can be rearranged by identifying common 

factors, i.e. normalization factors:

( ) ( )ToxSii UC4Tneq =int

CSi is the silicon capacitance: SisiSi TC e=





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2

q
vv FBT

intln 



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


−=

2

q
UVV TFBT

intln
without normalization:

The Threshold Voltage also depends on the silicon and oxide thicknesses (in addition to 

the material work functions).
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Charge based model of DG FETs : Normalization

• Comparison between exact analytical solution and approximate solution

In weak inversion, volume 

inversion is responsible for the 

increase of mobile charge with TSI

The mobile charge density is 

twice the charge on each 

gate (with opposite sign):

( ) ( )yQ2yQ Gm −=

(here, the normalized charge factor = 2. 10-3 C m-2)
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Charge based model of DG FETs : Current

I independent of y (quasi-static)
( )

( )
dy

dy

ydV
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• Adopting normalized quantities, we obtain:

• Assuming drift-diffusion transport, the current in the channel is given by:
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Expressing dV as a function of Qm and dQm , we get:
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Charge based model of DG FETs : gm/I invariant
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• The  transconductance to current ratio, evaluated in saturation, is an important parameter 

for analog design.

• The transconductance is given by :

• The transconductance to current ratio is then: 
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Charge based model of DG FETs : gm/I invariant
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• An approximation of the current in weak inversion leads to:

This characteristic is almost independent of 

the devices parameters (TOX, TSI…): 

Same design strategies apply

for Symmetric DG and Bulk

MOSFETs.

‘Bulk’

‘DG’
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The relations linking the charge densities to the potentials have strong similarities with those of 

bulk MOSFET. 

Charge based model of DG FETs : Capacitances

Transcapacitances as a function of VGS at different VDS . Symbols: 2D; lines: analytical model.

/ij i jC Q V=  

Linear Saturation

Partitioning of the mobile charge density 

between the source and the drain 

defines source and drain equivalent 

charges that are used for AC modelling
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Short Channel Effects in DG FETs

◼ In a 20 nm channel length

◼ The subthreshold slope is 102 mV/dec for Tsi=10 nm and 81 mV/dec for Tsi=6 nm 

◼ Drain Induced Barrier is 220mV/V for Tsi=10 nm and 60 mV/V for Tsi=6 nm.
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TSI=10nm

TSI=6nm

220mV/V
60mV/V

Drain induced barrier 

lowering effect

These departures from ideal 1D charateristics are due to short channel effects.

Even though there are two gates, some rules have to be defined between

channel length and layers thicknesses (Tox and Tsi). 

IEEE TED, vol.51, 8 -2004
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Quantum confinement in double-gate FET
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Emerging FET devices have dimensions 

comparable to the electron (hole) wavelength

Active length=30 nm

Quantum corrections

Quantization effects in DG FETs

◼ Depending on TSI , 2D discrete levels cannot be ignored. 

These will modify the apparent band gap of the semiconductor and will affect the 
charge-potential dependence…but not only: 

The electric field in the silicon film will also impact the solution of the Schrodinger 
equation through the electric potential.

◼ The solution requires solving quantum mechanics AND electrostatics self-consistently. 
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Typical values for DG MOSFET: Tox=1 nm  – Tsi=10 nm  – LG < 20 nm

Is the behavior still “classical” ? Do carrier move effectively in a potential that varies ‘slowly’ ? Can we still 

use 3D DOS ? Is drift-diffusion still representative of the transport ? Are Boltzmann statistics accurate 

enough ?...

Adopting a ‘rule of thumb’ approach, we can ‘intuitively’ state that:  

• For very thin silicon films (<5nm), 2D states are so confined that electrostatic correction can be 

ignored, but not the confined levels.

This requires using a 2D density of states ?

• For relatively thick films (>20 nm), 2D levels can be ignored, reverting to the more classical 

description presented so far.

We can still fairly use a 3D density of states ?

• For intermediate thicknesses, 2D confined states should be coupled to electrostatic.

Should we use ‘2D+discrete levels’ or ‘3D + continuum of states’ ?

Quantization effects in DG FETs
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• For an infinite confined quantum well, the solution of the Schrodinger equation 

leads to the following energy states and eigenfunctions:
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We introduce 2 major approximations.

- We assume that the effective-mass approximation is valid, meaning that we

can neglect the periodic potential and use instead the effective masses

- We assume that the envelope wave function (the wavefunction varies slowly

with respect to the periodic atomic potential) vanishes at the Si/SiO2 interface

• But what happens in a semiconductor when ‘internal’ potentials are changed ?

Can we still use the band structure of the semiconductor or do we have to recalculate it including 

the potential perturbation ?

Quantization effects in DG FETs

These solutions presupposes that the wavefunction varies slowly with respect 

to the periodic atomic potential. This is known as the ‘enveloppe function’ 

approximation.

Are the two equations above sufficient to calculate the mobile charge density 

?

Is the density of state to be used 3D or 2D ?
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• In case of a bulk MOSFET and in weak-moderate inversion, the potential at the channel 

interface can be approximated by a triangular well. Solutions to the Schrodinger equation 

are then given in terms of Airy functions, leading to the following energy levels: 

• Under higher gate voltage, large carriers density will also affect the  ‘ideal’ 

triangular well through the Poisson equation. The potential which appear 

in the Hamiltonian is obtained from the solution of the Poisson equation:
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No exact solutions exist in this case. The method consists in solving these coupled 

equations by choosing the ‘best’ trial wave function and minimize the related energy through 

a given parameter. This is known as the ‘variational approach’.

( ) ee dEEFN Fnn −−= CN

Stern PRB , vol.163, n.3 1967

Ex: Quantization effects in bulk MOSFETs

N(x) is weighted by the

amplitude squared of the wave function

These solutions presupposes that the wavefunction varies slowly with respect 

to the periodic atomic potential. This is known as the ‘enveloppe function’ 

approximation.

Are the two equations above sufficient to calculate the mobile charge density

?

Is the density of state to be used 3D or 2D ?
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• In bulk MOSFETs, the ground state trial function for channel quantization is chosen such as : 

We choose 0(x) as a trial wave function for the fundamental confined energy level will 

minimize the energy of the confined state:

( ) xa2

3

0 xa2x −= e
Find ‘a’ that will minimize the 

energy E0. 
E0 will depend on 

‘a’

bulk MOSFET

Stern PRB , vol.163, n.3 1967

Fang, PRL , vol.16, 1966

Ex: Quantization effects in bulk MOSFETs
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Carrier concentration profile obtained by analytical modeling for various gate voltages for a 

silicon film thickness of 10 nm, 5 nm and 3 nm.
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These curves are representative of the probability to find an electron, and thus are ~ ( ) 2
x

In ‘thick’ silicon layers, the wave function is clearly affected by the carrier concentration through 

the electrostatic potential in the quantum well.

Quantization effects in DG FETs
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For the 3 nm case, the spatial distribution of 

the carrier concentration remains the same: 

The wave function is not affected by the 

charge density. This is expected for a very 

narrow quantum wells.

The inversion takes place at the center of the 

silicon film, even under high density ! …This 

was not expected with the classical model, 

even though it could predict volume inversion 

– but in weak inversion only !
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Quantization effects in DG FETs
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• For an infinite confined quantum well, the solution of the Schrodinger 

equation leads to the following energy states and eigenfunctions:
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• But what happens in a semiconductor when ‘internal’ potentials are changed ?
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Structural confinement

E0

E1
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Electrical confinement

Quantization effects in DG FETs
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Quantization effects in DG FETs

• In order to take into account both the confinement due to the quantum well formed by the silicon film 

between the two gate dielectrics and the confinement induced by the electric field in strong inversion, we 

propose to rely on the variationnal approach:
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2

π
cosuacoshu

with u=2x/TSI - 1 , equal to 0 at the 

middle of the film

• The trial wave function for the fundamental state

must be symmetric with respect to the centre of the 

film

EC
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E1t

E2l

E2t

EF

VG

Confined 
states with 

longitudinal 
or transverse 

effective 
masses

<100>

- It reduces to a cosine function in the weak inversion regime (a is expected to be small) since the 

potential energy is then close to that of a square-well.

- It reduces to a kind of x.exp(-ax) expression at each interface in the strong inversion regime, like 

for the bulk MOSFET. 

In this approach, only one energy level is considered.
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Quantization effects in DG FETs

Confinement by the potential well. Confinement what would be obtained for a 

triangular well where  the confinement is due to 

the transverse electric field
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This energy increase in the fundamental state of the DG ‘quantum well’ can be seen as an increase in the 

threshold voltage, as if the semiconductor band gap was increased.

• Then, for a given surface potential s, the inversion charge calculated by including the quantum 

confinement would correspond to that of a surface potential

• The apparent threshold voltage is then increased upon quantum confinement corrections.

qE0s −

But then, can we still use a 3D density of states ?

This will depend on the energy separation between the different confined levels:

- If Ei-Ei+1 <UT, then we can consider the system as 3D and we can safely use Boltzmann

statistics (if non degenerated) with 3D DOS.

- If Ei-Ei+1 >UT, the system becomes 2D: we have to include exited states in the calculation of

carrier density. In addition, we should also use Fermi Dirac statistics.
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These quantum corrections can be included analytically:

• New charge-potentials relationship:

• Normalized drain current expression:

‘only ‘ and  additionnal term in the drain 

current expressionNo empirical parameter is needed

Confinement by the potential well.
Confinement that would be 

obtained for a triangular well 

where  the confinement is due 

to the transverse electric field
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Quantization effects in DG FETs
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Including doping in DG FET
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The doped DG MOSFET and the Equivalent Thickness concept

We have to include the doping Na in the

Poisson equation,

Energy diagram of an P type doped

Si channel

… but then, no analytical solution can be found ...

Highly Doped DG FETs

In practice, the doping can be used to tune the threshold voltage 
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Equivalent thickness Mobile charge density

…but we can define an equivalent thickness, which is doping dependent, and use the undoped 

core model  !

Tsi = 40 nm

20 nm

10 nm

Highly Doped DG FETs
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III- The Gate All Around FET.

111Jean-Michel Sallese
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The GAA FET

Is eox/Tsi still the capacitance per unit 

surface for a cylindical gate ?

R2

R1

From symmetry, the electric field is uniform and radial. From Gauss 

theorem, the flux of the electric field accross the enclosing surfaces is

propotionnal to the charge (per unit length) between these surface.
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Surrounding the silicon by a gate is the most efficient geometry to control the electrostatic

r

( outside, E=0 )

The potential between the gate electrode and the potential @ R1 is then:

rE
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The capacitance per unit surface is defined as:
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The radius and layer thickness are related each other by:
1si R2T =

12ox RRT −=

Then the oxide capacitance per unit surface in a GAA device is:

If R2-R1 ~0, COX reverts to the planar gate capacitance:
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The GAA FET
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We consider undoped (lightly doped) cylindrical GAA-MOSFET with n-type S and D.
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Symmetry of the system imposes cylindrical coordinates. 

Poisson equation in combination with semiconductor statistics gives:

And must satisfy the boundary conditions:

( ) SR  =

- Symmetry of E wrt the center of the cylinder:

- and at the surface:

ID

This differential equation has an exact analytical solution given by:

The GAA FET

The coefficient B is related to the surface potential from the limit condition. 

At this stage of the derivation, its value remains unknown.
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This can also be written:

Potential @ film center: ~ 0 for DG

The mobile charge density per unit surface, i.e. considered as a ‘projection’ on the 

cylinder cross section, i.e. half of the perimeter, is given by:

From Gauss theorem, this charge should be related to the flux of the electric field 

enclosing the circular gate. Here Qmob represents the charge density in the ‘DG sense, 
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Then, for a given VG-V we can show that we obtain an 

implicit relation in terms of B (though the parameter ):
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The unknown

The SC parameter

The GAA FET
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Expressing  as a function of Qmob leads to a charge based model. 
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Recalling the expression we obtained for symmetric DG MOSFET (normalized quantities)
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We finally obtain the core charge based relationship for the GAA FET.

Toxsp UCQ = 4

DG

The GAA FET
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Defining the silicon capacitance of in GAA MOSFET by:
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As for the DG, we define a normalized charge factor for the GAA:   QSP= 4Cox UT. 
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Then, the charge based relation for GAA MOSFET becomes:

Toxmobmob UCQq = 4
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

Already known

Introduction of the normalization for charges

The corresponding normalized

intrinsic carrier density is consistent

GAA and DG FETs share the same relationship between potentials and mobile charge densities

The GAA FET
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Adopting the same procedure as for the DG MOSFET, and defining an effective width as 

Weff= R (in a ‘DG sense’), the current is: 
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mm 22 44

It can be shown that a normalization factor for the current is:

Leading to a normalized current:
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Strong similarities exist between DG and GAA MOSFETs that lead to a unique 

expression of charge-voltage relationships provided a correct definition of gate oxide 

capacitance, silicon capacitance and specific normalizing charge density are used.

The GAA FET
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◼ Double gate structures suffer from technological issues since both gates have to be 

aligned with a precision of the order of the nanometer.

An interesting alternative comes from the FinFET structure.

◼ For instance, a FinFET is obtained 

by etching the active silicon layer 

of an SOI wafer, which defines the 

‘channel’, followed by oxidation 

and contact formation. 

FinFETS: structure and characteristics
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FinFETS: structure and characteristics

One of the challenges in FinFET integration is

the formation of 5–10 nm wide fins, required to 

fully benefit from the short channel control of 

multi-gate devices.

In addition, since ultra-thin Si films are needed to 

obtain good electrostatic control, the access 

resistance is very high in narrow fin devices and 

can limit the device efficiency

SEM and TEM images of a FinFET.
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The Equivalent Channel Thickness
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Generic multigate MOSFETs

All these topologies use a common gate

electrode.

However, the gate insulator can be non 

homogeneous in a given structure.

The idea is to see if a representation of these

3D devices in terms of an equivalent planar

DG MOSFET is still possible.

Unlike planar DG MOSFETs, the Boltzmann-

Poisson equation should be solved in 2D:
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However, below the threshold, the device should be treated in 2D since we expect

the electric field to spread deeply in the silicon.

Gate electrode

Gate oxide

Silicon

HFIN

HFIN

TFIN

TFIN

LEQ_DG=LFIN and   WEQ_DG= HFIN + TFIN.In that case:

?
‘DG view’ 

Case of study: the QuadriGate

We notice that above the threshold, mobile charges will accumulate at the Si/SiO2 interfaces:

the device reverts to a quasi 1D system, we can simply add the contributions from each interface

to calculate charges and currents.

The solution obtained for the long channel DG MOSFET could be used to estimate the charge

density above the threshold for the rectangular FET.
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How can we adapt the symmetric DG model to simulate an ideal FinFET with a 

uniformly thick gate insulator (top and side gate capacitances equal) ?

• Below threshold, the mobile charge in the silicon is very small: Q~0, and so YS~VG-D

• The solution is obtained from the Laplace equation and

depends on the boundary conditions.
DY=0

• For simplicity, we consider that the FinFET will be 

‘surrounded’ by a uniform gate, i.e by a uniform oxide.

~ ’gate all 

around’ 

• Let us assume that the potential will be constant across the silicon. At least, this 

trivial solution satisfies Laplace equation

 (x,y) = 0

QuadriGate vs DG : the Equivalent Thickness

This analysis can be used to link rectangular multigates and planar DG if we can satisfy that:

- above the threshold, we don’t ‘see’ the volume.

- below the threshold, both devices are controlled by the charges in the volume.
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If the rectangular FET can be mapped on a DG FET, we can write:

Since this relation is known to give both surface and volume charge densities, the 

sensitive parameter should be C1 which can be determined as follows.

We recognize that C1 is related to the local mobile charge density below the threshold:
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where C1 represents an integration constant that matters mainly below the threshold.

In symmetric DG, C1 was given from: T
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In addition, if we suppose that below the threshold (x,y)=0, carriers density/surface is:
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QuadriGate vs DG : the Equivalent Thickness
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The mobile charge density/surface is

related to the charge on the 4 gates:

For QuadriGate Fets, the integration constant C1 becomes:
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Then, formally the charge-potential relation is similar to that of the DG provided that 

an equivalent silicon thickness TEQ is defined: 

After applying the ‘DG’ normalization: 
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QTneq /int = Toxspec UCQ = 4and

QuadriGate vs DG : the Equivalent Thickness
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Fin

Eq
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Then, we can define a specific current such that:

The normalized current in FinFETs is then obtained through a DG like relationship:
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As usual, the current is derived from the mobile charge density: 
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QuadriGate vs DG : the Equivalent Thickness



Jean-Michel SALLESE Slide 130

DG

An equivalence between Finfets and Double Gate FETs exists via equivalent

technological parameters.

Quadrigate

LG LFin

W ½ Si/SiO2 Per.

: HFIN + TFIN

TSI

FinFin

FinFin

TH

TH

+



CSi CEQ

COX COX_EQ=<COX>

Drain current in a long channel (1mm) QuadriGate

FETS: good matching with the DG model, both below

and above threshold, in linear and saturation.

nm
TH

TH
T

FinFin

FinFin
EQ 20=

+


=

QuadriGate vs DG : the Equivalent Thickness
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How the ‘Real’ current will vary in FinFET with respect to symmetric DG for the 

same geometries ?

FinFin HT = a

For the FinFET, the specific current then becomes: 
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a
m +=
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L
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The specific charge QSP remains unaffected, whereas the normalized intrinsic 

charge density will be lowered in FinFET like structure.

Asymptotic expressions
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- Assuming strong inversion operation and saturation, the normalized charge 

density at the source (VS=0) and normalized current are given by:
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We suppose that: 

Then, the current in FinFET in SI is higher than in DG:

no diff. between FinFET and DG

FinEq T
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1
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+
=
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Asymptotic expressions

- Under weak inversion (and saturation), the normalized charge density at the source (VS=0) is

given by:
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- The normalized current is then:

- In strong inversion, the variation of qint was ignored. However, this can no longer be 

assumed in weak inversion:

- After de-normalization, and taking into account the correction of qint, we find that the current in 

weak inversion should be almost the same in equivalent DG or FinFET devices:

Threshold voltage would be higher in FinFET like 

structure wrt to equivalent planar DG (?)

FinEq T
1

1
T 

+
=

a
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Generalization to arbitrary geometries

• We consider a device having a silicon channel of section S and perimeter P.

• We assume that the potential is uniform inside the device when biased below threshold.

Adopting the same DG concept, the integration constant is still obtained from the mobile

charge density below threshold.

This gives a generalization of the equivalent thickness:

P

S

P

S
TEQ


==

2

2

• But above threshold, the current should also scale with the perimeter. 

This defines an equivalent width: 
2

P
WEQ =

S

P

Typical NW: note the non-ideal circular shape … and 

gate oxide non uniformity 
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Generalization to arbitrary geometries

• Case of the equilateral triangle with 10 nm sidewalls.

Sides: WSi

nm
W

T Si
EQ 9.2

32



=

nm
W

W Si
EQ 15

2

3
=


=

Uniform oxide

thicknessi

Si

The approach is accurate even when

devices exhibit sharp corners.
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The ‘worst’ non-planar device is the cylindrical FET (GAA FET). 

We can wonder if the approximate solution proposed so far still applies to the GAA FET

Applying the definition of the equivalent thickness concept to the GAA FET, we obtain: 

R
R

R
TEQ =




=





2

2 2

Then,the equivalent thickness is

exactly what the exact solution for 

the GAA FET gives through the 

definition of the silicon capacitance, 

i.e.  Csi = esi/R= esi/TEQ.  

This confirms that :

- The charge based relation derived for the planar DG MOSFET is generic.

- The definition of Teq is well sounded.

Generalization to arbitrary geometries
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The Equivalent Gate Capacitance
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So far, we analyzed specific structures where the gate insulator capacitance is constant all 

around the device. However, in real structures, this assumption does not hold anymore. 

For instance, a FinFET has different oxide thicknesses and non-planar capacitances (fringing

capacitances) reverting to a quite complex capacitive network. 

Typical cross section of a FinFET

Neglecting upper (and bottom) thick gate oxide generates some mistmatch regarding

I_V characteristics: the drain current is underestimated above the threshold

!

ID of DG FinFET vs VG with a 50 nm top oxide thickness. 

3D simulations: symbols, DG model with TEQ: dashed

Tox sidewalls : 1.5 nm

The equivalent gate capacitance



Jean-Michel SALLESE Slide 138

At this point, we introduce 3 assumptions that will be justified a posteriori:

- We assume that the threshold voltages are the same whatever gate oxide interfaces. 

- We consider that above the threshold, each channel is ‘independent’: the total current reverts to 

the sum of all Si/SiO2 channel currents.

-Finally, we neglect the log term in the normalized current expression above threshold. 

Then, the normalized current is

Above threshold the normalized current only depends on the gate overdrive voltage (VG-VT).

Therefore, since VG-VT is assumed to have the same value at each interface, above the 

threshold, the total normalized current will be the sum of normalized current:

the total current can be expressed via the sum of specific currents for each channel:

( )
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SI qqi
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+−= 22

The equivalent gate capacitance
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For a given interface, the specific current is : 
L

W
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2
4 2 = m

According to the DG concept, each interface extension (Winterface ) has to be divided 

by 2 since the equivalent DG representation should evidence a symmetry.

Therefore, the equivalent specific current will be given by:
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Defining an equivalent channel width as:
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With the equivalent capacitance given by:   
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The equivalent gate capacitance
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This definition for the equivalent gate capacitance can be generalized to any kind of 

multigate FET provided a single gate electrode is used (not independent gates)

From its definition, the equivalent capacitance can also 

be understood as the mean value of the gate 

capacitance per unit surface in the DG sense, i.e. 

considering that each gate electrode is turned into a 

‘symmetric’ DG picture.

Magnification of I-V characteristics:

Full and dotted lines: model with and 

without the equivalent capacitance

Model vs measurements: TG MOSFET 

as a function of gate voltage in linear and 

saturation regimes (Intel). 

measurements: crosses, model: lines.

The equivalent gate capacitance
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MUGFETS and DG FET equivalences

DG FET MUGFETs

LG LG

W
WEQ=Half of the 

total perimeter

TSI Perimeter

Surface
TEQ


=

2

CSi

COX
Mean value of the total 

gate capacitance

EQSi

Si
EQSi

T
C

_

_

e
=

The charge based model for the DG FET is therefore very generic. It can be used for 

almost whatever the geometry provided some transformation rules of technological 

parameters are done. It also inherits from powerful normalization concepts.
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The ‘Simplest’ FET
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◼ Multigate FETs with undoped channels are interesting architectures because:

◼ Better control of the channel with ‘many’ gates.

◼ Almost ideal subthreshold slope (60mV/Dec).

◼ Better immunity to random dopant fluctuations.

◼ Ultra-sharp source-drain junctions suppressed 

TSMC FinFET

Double Gate FinFET Nanowire

Introduction to Junctionless FETs
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In contrast to the accumulation mode FET, depletion is a key feature 
in JL FET operation.

◼ Combination of channel and source/drain doping profiles define three kinds of FET devices.

Accumulated/Depleted n-
channel. 
Volume, Majority carriers

Accumulated n-channel.
Interface, Majority carriers

Inverted n-channel.
Interface, Minority
carriers

BOX

P

N-poly

N++ N++

Inversion mode FET

BOX

N-

P-poly

N++ N++

Accumulation mode FET

BOX

N+

P-poly

JL FET

N+ N+

Introduction to Junctionless FETs
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◼ The device is a gated resistor with a heavily and uniformly doped  (~ 1019 cm-3) silicon 

channel.

◼ Channel switches-off gradually upon negative voltage applied to the gate (for n-type 

channel). 

◼ Typical channel thicknesses: 10 to some nm.

◼ Architectures: planar Multigate and nanowires.

Gate

depletion

neutral channelS D

Gate

+   +   +   +   +   +

+   +   +   +   +   +

N-type doped (symmetric)
double gate JL FET

Introduction to Junctionless FETs
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Introduction to Junctionless FETs

◼ Back in 1952 … and then was the JFET

a Junctionless FET .. with Junction Gates
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Proof of concept

….‘A UNIPOLAR FIELD-EFFECT 

TRANSISTOR’ 

by SHOCKLEY W., in PROCEEDINGS. OF THE 

INSTITUTE OF RADIO ENGINEERS - 1952

…preliminary concept 

also used 2 gates !
Colinge, Nature nanotechnology

(2010)

• Operation of a JLFET is based upon depletion of a highly doped semiconductor channel.

• No junction is needed since the current is carried by majority carriers in the volume.

• This contrasts with inversion mode FETs where minority carriers, supplied from source and 

drain junctions, are controlling the current.
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◼ J.-P. Colinge et al., Nanowire transistors 

without junctions, Nature Nanotech., vol. 5, n°

3, pp. 225-229, 2010.  

p-type JL FET n-type JL FET

-- Tri-gate IM

Performances in line with IM trigate FETs, but easier integration. 

Proof of concept
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How JL DG FET works

- In inversion mode FETs, what bothers is the depletion region, and its accurate evaluation is of ‘little 

importance’…

- In junction-less  FETs, what matters is the depletion region, which  has to be calculate with care ! 

‘Uniform Doping’ along Source-Channel-Drain: Junction-Less channel

The current flows in the middle of the 

channel, not at the interfaces.

Gate

Depletion

‘neutral’S D

Gate

We consider a symmetric Double Gate

structure, with a uniformly doped channel

(ND), and no junction.

S DChannel

Gate

Gate

Tsi ~ 5-10 nm

ND ~ 1019 cm-3

Tox ~ 1-2 nm
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Pros and Cons of junctionless FET
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Carrier mobility in JLFETs

◼ Bulk conduction of JL FET is expected to improve mobility with respect to ‘surface’ conduction 

in IM FET:

◼ In IM FETs, the normal electric field can be very large.

◼ In JL FET at flat band, the electric field is negligible

◼ improvement is then expected. 

10 nm

2
 1

0
19

cm
-3

G
a

te

G
a

te

Double gate JL 
FET @ Flat Band

Inversion Mode 
DG FET

E=107V/m
e~1013cm-2

Same
total
carrier 
density

u
n

d
o

p
ed

Limited by 
Surface 
roughness
scatteringE=0V/m

e~1013cm-2

Scaled silicon MOSFET

D. Vasileska, TED Vol. 44, n. 4, p. 577 (1997)
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Carrier mobility in JLFETs

◼ But high doping can limit carrier mobility in JL FETs: impurity scattering dominates in JL FET.

◼ This mobility degradation is still an issue to overcome for these devices.

Jacoboni C. et al. 
Solid State Electron. 
20, 2, p. 77 (1977).

JLFET 10nm, 2 1019cm-3:

• m JL FET ~ 100 cm2/Vs

• m DG FET ~ 200 cm2/Vs

…but will not degrade any more 

while increasing doping.
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Modelling the JL FET
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How JL DG FET works

- In inversion mode FETs, what bothers is the depletion region, and its accurate evaluation is of ‘little 

importance’…

- In junction-less  FETs, what matters is the depletion region, which  has to be calculate with care ! 

‘Uniform Doping’ along Source-Channel-Drain: Junction-Less channel

The current flows in the middle of the 

channel, not at the interfaces.

Gate

Depletion

‘neutral’S D

Gate

We consider a symmetric Double Gate

structure, with a uniformly doped channel

(ND), and no junction.

S DChannel

Gate

Gate

Tsi ~ 5-10 nm

ND ~ 1019 cm-3

Tox ~ 1-2 nm
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◼ In the simplest picture, in JL FETs  the current flows uniformly across the channel 

thickness.

◼ This is indeed valid at flat band and low VDS .

◼ Then, the conductance scales with the doping and section of the channel.

◼ … but this is not correct as soon as VDS increases.

SiD

Band_Flat
0~V

TN
L

W
q

DS

= m

Is JL DG FET a simple resistance ?

156Jean-Michel Sallese



Jean-Michel SALLESE Slide 157

JL DG FET versus Inversion Mode FETs

It seems that the charge 

density in a DG JL FET can 

be obtained from a DG 

MOSFET model for relatively 

low doped channels.

◼ Can the Double Gate JL FET be modeled as a an inversion mode DG FET ? 

◼ Do we really need for a new model ?
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In fact, there is no way to 

simulate a DG JL FET with a 

regular DG FET model. 

Model roots are different.

◼ Increasing the channel doping distorts noticeably the charge-voltage dependence.

JL DG FET versus Inversion Mode FETs
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Charges versus Potentials in JL DG FET

Regarding modeling aspects, having a doped channel makes a big difference with respect to 

undoped junction based FETs.

An additional term due to ionized dopants (ND) must be taken into account in Poisson equation:

Depending on the potentials, the semiconductor can be:

- Depleted:  - V << UT

- Neutral:  - V =  UT Ln(ND/ni)

- Accumulated:  - V >> UT

Double Gate structure, with a uniformly

doped channel (ND).

No p-n junction.

S DChannel

Gate

Gate

Tsi ~ 5-10 nm

ND ~ 1019 cm-3

Tox ~ 1-2 nm














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D
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
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Charges versus Potentials in JL DG FET

◼ Poisson-Boltzmann equation has no analytical solution.














+−−=




−

D

U

V)x(

i

Si

2

2

Nen
q

x
T



e

Y

 Approximate solution based on 

finite difference in 3 points 

inside the channel.

V is the channel potential , i.e the 

Fermi potential for electrons
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Charges vs Voltages in JL DG FET

A crude approximation would neglect mobile charge density, i.e. electrons in our case: full 

depletion approximation.

Not acceptable since the charge factor in the Poisson equation can vary from -ND (full 

depletion) up to several ND (accumulation).

Integrating once from the center to the semiconductor interface, the surface electric field

becomes a function of the center and surface potentials (Ecentre=0 by symmetry):

Knowing the surface potential is not enough to evaluate the charge in the silicon. 

This also depends on the potential at the center.

These variables can be linked by expressing the second derivative in terms of finite

differences, where the discretization points are the center and the interfaces:

with
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Charges vs Voltages in JL DG FET

( )








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


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


=−

−

D

U

V

i

Si

SC
S Nen

Tq
T

0

8

2

0



e
We obtain

❑ This relation links the center and surface potentials. 

Note the dependence on silicon thickness and doping density.

SCDmSC TqNQQ +=

The total charge is made of the mobile Qm and fixed charges, and must be balanced by the 

charge on the two gates:

( ) SCoxSG QCV −=−− 2D

After a detailed analysis, we can show that the solution can be split in two modes 

of operation: 

❑ Depletion or accumulation mode.  
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Charges vs Voltages in JL DG FET

❑ In accumulation:  








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28
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SCD
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SiD

SC
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i

D
TG

TNq

Q
U

C

Q

Nq

Q

n

N
UVV

e
D❑ In depletion:  

❑ Circles indicate when the silicon

is neutral in all the volume. 

This is the flat band condition

❑ Eventhough the threshold voltage 

does not have the same meaning as 

in junction based FETs, we can

define it as the x-intersection of the 

mobile charge when extrapolated

from the quasi linear section, before

subthreshold.
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( ) SCTGox QVVC −

❑ In depletion mode:

The ‘distortion’ in the Q-V characteristic 

comes from the quadratic term of the 

charge density.

This  contribution is missing in the inversion 

mode DG FET !

A threshold voltage concept becomes 

meaningless:

Threshold voltage considerations

❑ In accumulation mode:

The device looks like a ‘regular’ inversion mode DG FET… A threshold voltage concept 

is then possible.

VT ‘accum’

Note that for relatively low doped channels, the devices will mainly operate in accumulation


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
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1
ln

Neglecting the Ln term and setting                        , we obtain:SCDSC TqNQ =
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Under specific bias, the channel can combine accumulation close to the source with

depletion near the drain: this corresponds to the hybrid channel case.

The Hydrid channel


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Where each integral has a well defined value.

In hybrid operation, the current can be split in some ‘below flat band’ and ‘above flat band’ 

operation:
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Derivation of the current in JL FET

The current in depletion
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I mmm

dx
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QWI m −= m

The current is given by:

The current in accumulation
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‘Bulk’ Current

Depending on the operation mode, the current will take different expressions:
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In depletion, there are two slopes. 

This behavior is specific to JL FET and has no counterpart in regular DG FETs.

Therefore, also the gate

transconductance will de different

from the junction based DG figure.  

From the charge-potential

relationship in depletion, in addition 

to the linear term, there is a 

quadratic term that generates this

non-linearity.

The gate transconductance in JL DG FET

Those dissimilarities are less

prominent when the doping or silicon

thickness are decreased



Jean-Michel SALLESE Slide 168

Inversion layers in DG JL FET

◼ To increase performance (on-current), higher doping and thicker channels are needed . But 

then the depletion region can reach an asymptote, whatever the magnitude of the gate

voltage : the FET cannot be switched off .

◼ The reason for a lower limit to IOFF is the occurrence of an inversion layer (holes in n-

channels)

57.0
27105

11107
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A =
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B

Design issues of JL DG FET
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◼ How to increase devices performances (current) ?

◼ Higher doping and/or thicker channels.

◼ But there is an inherent limit to the depletion charge.

◼ Maximum depletion is independent of the gate voltage

◼ Instrinsic lower limit to off-state current.
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Design issues of JL DG FET
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Real case:
Assymetric operation of JL FETs
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Asymetric operation in JL DG FET

▪ Asymetric operation can take place when gate

oxides and/or gate voltages are different.

▪ From a potential point of view, when both gate

voltages are below the flat bands, the potential is

no longer symmetric.

But there is an extremum xext which (in our 

conditions) lies inside between the gates.

▪ The electric fields at each channel interface are 

obtained by integrating Poisson-Boltzmann 

equation from −Tsc/2 to xext, then from xext to 

Tsc/2 (the electric field vanishes at xext):
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It comes out that this relation can also be considered as the solutions for two 

virtual symmetric devices (DG1 and DG2) having silicon thicknesses :

extSCSC xTT 21 += extSCSC xTT 22 −=

Combining these ‘virtual symmetric’ devices with new physical parameters 

(Tsc, tox and ∆) gives back the same surface potentials and charge 

densities as for the asymmetric case.

❑ Additional problem: find xext for given Vg1 and Vg2 !
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In case of symmetric operation, we know that once the gate potential and 

the silicon thickness are known, the charge density follows from the 

symmetric charge based model
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The nanowire FET (JL)
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❑ The idea is to perform a trapezoidal integration between the center and the surface.

After manipulation, we obtain an approximate relation between the surface field and the 

integral of the charge density in the semiconductor:

❑ Defining equivalent parameters, it is possible to simulate charges and current

in JL nanowire using the relationships developed for the DG counterpart.

Generalization to nanowire JL FETs

In cylindrical coordinates, the Poisson – Boltzmann equation writes:

No analytical solution…

… but at the same time, integration of the Poisson – Boltzmann equation for the DG gives:
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Therefore, we obtain the same relationship as for the ‘well known’ DG  provided the 

channel doping and intrinsic carrier density are divided by 2.
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◼ Simple equivalence exist between Double Gate and Nanowire JL FETs. 
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Nanowire JL FET
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 –
 R

1
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Physical param, NW Equivalent DG

Radius-Thickness R Tsi=2R

Oxide thickness Tox 0.5 ToxLn(1+ 2 Tox/Tsi)

Width - W=R

Doping ND ND/2

Intrinsic carrier ni ni/2

Modeling JL Nanowire FET
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Impact of surface traps
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Traps in semiconductors
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Nanowires and traps

◼ Inclusion of surface traps in the nanowire model:

We assume an n-type semiconductor with a dopant density (ND) and acceptor 

traps NS located at the semiconductor/oxide interface for both geometries. 
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Nanowires and traps

Nanowires are often used as biosensors.

The techniques used to fabricate these devices are subject to introduce-generate 

defects at the semiconductor-gate insulator interface.

In addition, these nanowires are in contact with liquids (electrolytes, liquids with 

bio molecules) , which is a kind of ‘contamination’ with in regard to the drastic 

control of impurities in a clean room.

These defects may act as deep traps and impact the electrical properties of the 

sensor
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Nanowires and traps

Ungated JL NW - Self depletion

For a given doping level, decreasing the energy of the traps with respect to 

the intrinsic level ‘will’ remove the free carriers from the channel.

Even without a gate electrode, the 

electrical conductivity of the device 

will be highly influenced by a relatively 

low density of defects on the 

semiconductor-insulator interface.
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Nanowires and traps

Gated JL NW

Traps are changing VT ‘dynamically’.

Depending on their energy, they will affect sub- and 

above threshold characteristics.

Continous energy distribution of trapsDiscrete energy distribution of traps



VI - Ballistic transport in
nano-transistors 
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What is ballistic transport ?
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Transport in ultra short channels

◼ When the transistor gate length is about 10 nanometers, collisions of free carriers are 

expected to decrease: a quasi-ballistic regime is expected. Then, some questions arise:

◼ Is the mobility concept still valid ?

◼ Can drift-diffusion still be used for transport ?

◼ In ultra short devices, these concepts are becoming less valid , a ‘new’ theory is required. 

◼ A simple approach considers that the virtual source of the device is the strategic point 

for charge injection inside the channel from thermionic effect.

◼ The emission takes place primarily at the virtual source which is the point of maximum 

potential energy along the channel. 

◼ At this point, the current consists of a flux injected from the source into the channel 

(with an average velocity) and eventually a flux of back-scattered carriers. 
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◼ A simplistic view of charge transport inside the MOSFET channel: 

The picture inside the channel

Electrons travel across the channel without scattering in a ballistic MOSFET

< 10 nm~ 30 nm> 100 nm

Diffusive BallisticQuasi-Ballistic
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Diffusive BallisticQuasi-Ballistic

Drift-diffusion 

model

Virtual source 

model

?

Scattering Scatter-free

Equilibrium

transport

Non-equilibrium

transport

(Fermi energy is not defined)

What changes between Diffusive and Ballistic ?
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The virtual source. 
Fluxes
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◼ A simple approach considers that the virtual source of the device is the strategic point for 

charge injection inside the channel from thermionic effect.

◼ This emission takes place primarily at the virtual source which is the point of maximum 

potential energy along the channel. 

◼ At this point, the current consists of a flux injected from the source into the channel (with 

an average velocity) and a flux of back-scattered carriers. 

The virtual source

The virtual source barrier:

•The potential hump act as the effective 

source of carriers

•The gate voltage controls its height
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no ‘second’ back

scattering 

The flux concept was already introduced in the 60’s by 

McKelvey.

The basic idea is to decompose the current into fluxes 

that travel in positive and negative directions 

Flux of electrons 

from the source 

reservoir

FS

Source to 

channel barrier

tS FS

FD= tC (tS FS)
Flux of electrons 

collected by the 

drain (saturation)

tS , tC : transmission coefficients

Channel to 

drain barrier

rc tS FS

rC =1- tC : reflection coefficient @drain

Scattering theory relates the steady-state current to transmission and reflection 

coefficients. This offers a new dimension to conventional transport models that  are 

based on the net current. Through the concept of flux, we get closer to a microscopic 

description in terms of particles that build up a net current. 

Scattering and fluxes

After entering into the drain, scattering in transverse modes will prevent

electrons returning to the source.
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Then, the flux entering at the source is expressed in terms of the electron density ns obtained 

from equilibrium conditions (not valid at the drain), i.e. we can use MOS electrostatics:

Under equilibrium, the ‘forward’ and ‘backward’ oriented 

electron density at the source barrier must satisfy:

The ballistic limit corresponds to rC=0. The maximum current density is then:

SSthS tFvn =+

SSCthS tFrvn =−

The electron density at the source barrier is then:
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=

1
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It represents the maximum current as given by the 

thermal velocity of the injected carriers at the source 

(then there is still some channel resistance)

The drain current is then obtained as a function of the scattering parameter at the drain:










+

−
==

C

C
thGToxDSat

r

r
vVWCWFqI

1

1

GTthoxBallistic VvWCI =

Apparent mean 

velocity of carriers:

Equilibrium implies that:

<v+> = <v->= vth

Does not depend on VDS

C

C
th

r1

r1
vv

+

−
=

trans

D2

th
m

kT2
v




=

→



Scattering and fluxes

Vth is the equilibrium unidirectional thermal velocity (i.e.,

the average velocity of carriers crossing the plane x=0 in

the positive direction
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…. A slightly different view….

Suppose that we know the transmission coefficient t.

A given drain current means that there is also a backward

current flowing at the source. 

Then, the absolute value of all kind of currents at the source 

must also include this contribution: IS is the sum of ID and 

ID_back … and these global ‘microscopic’ currents revert to the 

sum of all ‘thermal’ currents, i.e. nSvth

C

D
S

t

I
I =+

C

C
DCSS

t

r
IrII == +−

thS
C

C
D

C

C

C
DSS vn

r1

r1
I

t

r

t

1
III =











−

+
=










+=+ +−

IS+

channel
ID

IS-

In the ballistic device, the current is independent of the channel length.

The question now is how to evaluate the reflection coefficient at the drain ? 
Typical values: rC~0.4 – 0.2

Scattering and fluxes
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-A source injected flux FS+ in the positive direction due to thermal emission over the source barrier. 

This occurs for carriers whose longitudinal kinetic energy is greater than the barrier height

- A global negative flux F- that is itself composed of 2 components (can we use same rC @ S & D ):

Under ballistic regime, the fluxes at the top of the source barrier can be decomposed into:

T

DS

U

V

D

S e
F

F
=

−

+

A simple relation then exists 

between FS+ and FD-

(non degenerate) :

• a fraction of F+ that is backscattered: rC FS+

• a fraction of carriers injected from the drain that is transmitted: (1-rC) FD-

Source, qVS

Drain, qVD

ESb (~50 meV)
EDb

F-

FS+

The barrier heigh ESb depends on the applied 

potentials, including VG

FD-

r FS+

(1-r) FD-

In contrast with former approach, injection from the drain FD- can no longer be 
neglected if the device operates in linear regime. i.e VDS<<UT

When VDS> 2UT, FD- can be 

neglected.

Scattering and fluxes
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The drain current be expressed in terms of the carrier density @ source barrier and related fluxes:

( ) +−− +−= ScDc FrFr1FThen, the total negative flux at the source barrier is:

The drain current is then obtained from: ( )−+ −= FFqWI S

As for the saturation case, we can link the electron density at the source barrier to the global flux of 

carriers through the thermal velocity:
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This relation is almost similar to the saturated 

case where rC was simply F-/FS+.

A potential based relation is then recovered.
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The current is directly affected by back-scattering

In very thin silicon layers, calculation of the 

charge density nS will have to include discrete 

energy levels in silicon.

However, only geometrical confinement is 

important, thus simplifying the model.

Scattering and fluxes
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✓ In saturation, the simplified model is recovered: ( ) th

c

c
TGS

saturation

v
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r
VVnqWI 









+

−
−

1

1

degeneracy will increase the 

average carrier thermal 

injection velocity. 

In strong inversion, the degenerate injection velocity 

is independent of the temperature for a given electron 

density, i.e. gate voltage. This contrasts with the non 

degenerate-low inversion operation. 

The injection velocity will then depend on VG. 

At high T, electrons start to spread in higher subbands

where their velocity will be lower (@ bottom of bands)

Weak-inversion

Non-Deg

Strong-inversion

Deg
Vinj is ‘always’ 

increased in SI

✓ In degenerate and saturation we obtain:  
2/3

2

deg 2
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2
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Scattering and fluxes
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The mean value of carrier velocity @ source increases with 

VDS (VGS=0.6V) and reaches the asymptote vth when VDS~6 
UT. At the same time, the negative (velocities) flux becomes 

negligible:

The current can be seen as an ‘inhibition’ of the negative flux

‘Whatever’ the drain potential, the injection velocity 

and the concentration at the source remain almost 

the same (~1013 cm-3), but not strictly constant. This 

differs from standard view involving Drift-Diffusion.
Note the ‘cooling down’ of the carriers @ drain.

Velocity evolution under ballistic conditions 

Acceleration of 

carriers (energy 

gain) towards the 

drain until 

(4/3)vF

FD- FS+

FD-

v+ carriers are injected from the source, v- from the drain:

The velocity distribution is in nonequilibrium, but each half 

is in equilibrium with respectively the source and the drain.

rC=0

v+ distribution 
@ source 

v- distribution 
@ drain

The fluxes 
compensate

DD & 
mob red. 

How the source masters injection

Carriers from the source will populate positive kx states, while thos from the 

drain kx- states in an hemi Maxwellian distribution.

note that the

inversion layer density at the top of the barrier is nearly equal to

its equilibrium value in the presence or absence of scattering (this

is a simple consequence of self-consistent MOS electrostatics

and is relatively insensitive to the specific transport model).

In the channel, carriers gain energy from the channel field.
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Investigating the electron distribution function (fB) in the ballistic limit in an ultra-small

MOSFET. Shape of the distribution function at different positions under bias

◼ Main features of ballistic transport:

◼ Asymmetry at the source injecting barrier.

◼ Development of the ballistic pics along the channel: 

carrier that do not scatter are accelerated  towards 

the drain.

◼ [nS+] increases with VDS (and [nS-] decreases): 

hemi-FD instead of Maxwellian.

fB(x,px)

The appropriate Fermi-level to use is that of the contact 

from which the state was occupied.

Because the Fermi-level change abruptly with energy, 

highly nonequilibrium overall distribution functions are 

expected. No local Fermi energy can be defined in

the channel (only at source and drain).

0

-0.1

-0.3

7.5 17.5 25(nm)

E
su

b
-b

 e
V

px

ms

md

from source

m=ms

from drain

m=md

Virtual 

source

nonequilibrium

Source injection

Negative velocity
can only come 
from drain or 
backscattered
source.

How the source masters injection

Channel 
frontier

A semiclassical approach is adequate because

it has been recently demonstrated that the MOSFET’s

operate classically down to channel length of about 10

Nm

In equilibriumk when VDS=0, the symmetry of the distribution

is achieved through the balanced injection from each

contact instead of detailed balance due to collision as in

the diffusive regime.

Note, however, that the source injection

increases to maintain the charge balance imposed

by the gate (see the density vs. VDS plot in Fig. 6). Hence,

the area under the positive half of the distribution at

VDS ¼ 0:2 V is approximately twice that of the positive

half of the equilibrium distribution

Thus, the shape of the increasing positive half rapidly

approaches hemi-Fermi–Dirac and its average velocity

vþx

increases up to 1:8  107 cm/s while the diminishing

negative half becomes more hemi-Maxwellian and the average velocity vx approaches the thermal velocity of

a hemi-Maxwellian

the ballistic

peak from the source causes heating in the drain region.

The positive

states are populated by injection from the source, and the negative

states by injection from the drain
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Is the ballistic FET a ‘Vacuum Tube ‘ ?
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The barrier model 

Ballistic FET and ‘nano’ Vacuum Tube

?

In the vacuum tube, electrons do not experience any scattering, as in the ballistic FET.

Does it means that both devices behave in the same way ?
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A simple model of the Vacuum Tube

Whatever the device, the current density is given by :

(note that neither drift nor diffusion currents concepts are needed)

In contrast to collision driven current, here carriers will 

gain energy at the expense of the electric potential :
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 −=− xx qvvm

This links velocity to the potential once limit conditions are known (Y0 , 0):

At this point, even though the current and the initial conditions are given, the spatial 

dependence of the potential remains unknown.

But whatever the transport phenomena, Poisson equation should also be satisfied:
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Making the following substitutions:

Poisson equation constrained to the current continuity gives:

Now, limits conditions are given from the potential peak at the virtual source 

(electric field =0), and given the initial potential:

After some manipulations, an explicit expression is obtained between z and :

A simple model of the Vacuum Tube
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Since z and : are proportional to the coordinate and channel potential respectively, 

the plot depicts the potential distribution inside the channel of the vacuum tube.

We note that whatever the channel length and the current density, the potential 

increases continuously between source and drain. 

Potential distribution in the vacuum tube
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Channel length 𝐿c = 10 nm

◼ © A Mangla | 2014
0.6 V

1 V

0.6 V

1 V

1 V

0.6 V

1 V

0.6 V

Potential distribution in b-FET (MC simulations)

Channel length 𝐿𝑐 = 100 nm
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… the Ballistic FET is not always a Vacuum tube…

• In very short channel length, the ballistic FET and the Vacuum tube looks almost the same:

The drain controls the electrostatics. 

• In relatively long channels, ballistic FETs and Vacuum tubes are different devices.

The gate starts to dominate and controls the electrostatics inside the channel. 

The relationship obtained for the vacuum tube cannot model the potential profile of the b-FET
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The ultimate contact resistance
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At the nano scale limit, we can wonder if the resistance of an infinitely short conductor 

drops to zero. Following Ohm’s law, this should be true since we have R= L/S.

Ballisticity and ‘contact resistance’.

In a 1D system, the current is simply the sum of all individual electron currents:

Noting that the 1D density of states N(k) in k-space is L/2 and replacing S by an 

integral over k (. 2 for the spin): 

( ) ( )( )kEGrad
1

kv k=


To prove this, we evaluate how much current a subband can carry. Each subband has a 

dispersion relation between the energy and the wave vector k, i.e. E(k). 

From band theory, the group velocity of an electron on such level is given by:

Experimentally, it was proven that when the length is reduced below the mean free path, 

i.e. when transport is ballistic, the conductance reaches a constant value.
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p

p

dk
k

kE
kNkf

L

1q
2I






p = period of the potential 

q/L : electron density per unit length

f(k) : probability that the state k is occupied

The resistance at the interface comes from the difference in the number of 

modes between the reservoir and the ‘channel’. Large reservoir is necessary 

if the voltage is assumed to be applied on the channel.
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At low temperature we can write:

( )
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Then, the maximum conductance per mode is 2q2/h, independently of the E(k)
relation.

The contact resistance of a single mode conductor is then:

In a given system, there is not only one mode. 

For example, in a quantum well, each confined level will give rise to a conduction mode. 

The number of modes M (assumed constant in energy) depends on the device geometry. 

These ‘parallel’ channels will then add up:

Now, applying voltage V1 and V2, there 

is a shift in E-k space breaking the 

symmetry between positive and 

negative velocities.

E1

E2

‘net 
current’ 
states

Populated 
states

Empty 
states

~0° K

2C
q2

h
R


=

M

1
k9.12

M

1

q2

h
R

2C =


= Length independent contact resistance

…does not depend

on the effective 

mass !

Ballisticity and ‘contact resistance’.
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F2
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The conductance per unit width of a point contact in 2D is then: 

Where kF is the Fermi 

Wavelength must satisfy: 
W

k

2

F
F =




For a conductor of width W, the number 

of ‘channels’ (states) is given by:
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2 DOS 
spin 

For nanoscaled devices with thin Si film devices, this resistance is a critical parameter:

Even more important in short-channel devices due to the increasing influence of RSD, as 

channel and access resistances become similar.

2DEG AsGa/AlGaAs QW with EF-Ec~15 meV and m*=0.067:    F~38 nm 

 kΩ6.2R  nm100W 

( ) ( )W101.5INTkM 7

F =

( ) 5kM F =

 kΩ13R  nm20W  ( ) 1kM F =

Increasing the carrier concentration increases EF-Ec, and so decreases F : M will increase  

Ballisticity and ‘contact resistance’.

Note that the contact resistance does not scale with W as well, exept for large 

conductors !

It changes in discrete steps
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The ‘molecular’ FET
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Simple picture of transport in a ‘molecule’

◼ Transitions operate  ‘horizontally’, i.e. without change in total 

energy. The mean value for the electron density N (<1) is 

expected to be an average between f(e−mS) and f(e−mD).

◼ Basically, the current flux generated by the non equilibrium

situation between the contacts and the state e can be written as:
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Attempt frequency of 
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◼ Under equilibrium conditions, both fluxes must 

compensate: 

‘Channel’
Source 

‘contact’
Drain 
‘contact’

mS

mD
e

( )( ) ( )( )NfqNfqI D
D

D
D

D −−







=−−=→ me


me


e 22

1


E

t
D

D 

From the uncertainty principle, we have:

Then,  can be interpreted as an energy 
broadening, mainly due to the interaction 
between quantized energies in the contacts 
and in the channel.

SSD III →→→ −== eee

( ) ( )D
DS

D
S

DS

S ffN me



me




−

+
+−

+
=

N represents an average of the occupation 

probability as induced by source and drain 

independently.

◼ This may happen only for a given value of N:

spin

( ) ( ) ( )( ) Nf1fN1 SS −−−−− meme

(from Supriyo Datta

Comment when one of the rates dominates.
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◼ Having defined N, the current flowing though the level e can be calculated (q>0):

Simple picture of transport in a ‘molecule’

( ) ( )( )DS
DS

DS
D ff

q2
I meme




e −−−

+





=→ 

S D

mS

mD

◼ Can the current always flow?

S D

mS

mD

( ) ( ) 1ff DS =−=− meme ( ) ( ) 0ff DS =−=− meme

0I D =→e

◼ A current will then flow only if the level stay between the Fermi energies of the contacts.

mDmS

f
1

0

0I 

e

D

mS

mD

( ) ( )DS ff meme −−

When the level is well below the Fermi energies, we have to rely on Fermi-

Dirac statistics, otherwise we will not have fs=fd.
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◼ The energy level should also depend on the applied potential, which was ignored in the 

former model. In particular, the level could move mid way between the source and drain 

potentials. Now, adding an extra gate electrode, we expect that the energy of the level can

further be changed independently of the source and drain through capacitive couplings.

◼ In that case, the gate potential can control the current flow in the ’channel’ by pushing the 

confined state inside or outside the contact energy range. 

Simple picture of transport in a ‘molecule’

( )DSG VVV ,,e
S

mS

mD

D

G

( )DSG VVVI ,,SV DV
GV

e

SC
GC DC

◼ Varying the number of electrons by DN, the ‘dot’ potential must satisfy:

( ) ( ) ( ) 0VVCVVCVVC GGDDSS =−+−+−

◼ The potential of the neutral ‘dot’ is simply obtained by:

( ) ( ) ( ) NqVVCVVCVVC GGDDSS D−=−+−+−

G
T

G
D

T

D
S

T

S
0 V

C

C
V

C

C
V

C

C
V ++=

T
0

T
G

T

G
D

T

D
S

T

S
N

C

Nq
V

C

Nq
V

C

C
V

C

C
V

C

C
VV

D
−=

D
−++==

GDST CCCC ++=

The critical distance is much less than the mean free path
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◼ The potential energy is then the sum of two contributions: 

Simple picture of transport in a ‘molecule’

T

2

0
T

2

G
T

G
D

T

D
S

T

S
NN

C

Nq
Vq

C

Nq
V

C

C
V

C

C
V

C

C
qVqU

D
+−=

D
+








++−=−=

Energy raised upon 

charging

Note that one could think that the energy could also be calculated from ½ CV2. However, this will not 

represent the potential energy of the dot, but the energy of the electric field in the capacitors. 

Energy raised upon coupling 

(no charge transfer)

The energy of the dot will the shifted by UN…but UN will also depend on 

the number of electrons obtained from the steady state current….that will 

in turn depend on UN: the system has to be solved self consistently. 

( )
( )

T

N
2

0N
C

UNq
VqNU

D
+−=D

In very small dot (~some nm), this may no longer be valid due to the Coulomb 

blockade effect (confined states will split upon charging).

The critical distance is much less than the mean free path
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The High Electron Mobility Transistor (HEMT)

2D electron gas
Al0.3Ga0.7As (n type doped)

GaAs (p type doped)

S G D

B

some tens of nm

GaAs substrate or epitaxy

(mm range )

Material properties of GaAs and AlGaAs

http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/bandstr.html

AlAs GaAs

Lattice (Amström) 5.66 5.65

Direct band gap (eV) 1.80 1.42

Typical structure
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AlGaAs HEMT band structure
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The High Electron Mobility Transistor (HEMT)

The abrupt change in the band gap between Al0.3Ga0.7As and GaAs is ‘responsible’ for a 

conduction and valence band discontinuity at the heterostructure interface.

EG AlGaAs

EG GaAsEF

2D e gas

ND doped AlGaAs

‘barrier’

NA doped GaAs

substrate

discontinuity DEC

qVG

qEFM
discontinuity DEV

DEC Al0.3Ga0.7As / GaAs = 0.22 eV

DEV Al0.3Ga0.7As / GaAs = 0.16 eV

Direct band gap Al0.3Ga0.7As = 1.8 eV 

Direct Band gap GaAs = 1.42 eV

Note that in practice, for the AlGaAs system, the large band gap layer is about 30% Al content. 

Higher values could create higher band gap discontinuities, but these are not useful because of 

intrinsic deep levels (DX centers) which ‘recapture’ free electrons.

Creation of a quantum well

2D electron gas : the channel

Gate electrode
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The High Electron Mobility Transistor (HEMT)

Decreasing the gate voltage will pull up 

the bands of the AlGaAs layer and pull 

up the quantum well

Similarities with standard MOSFETs … BUT:

EF

The 2D e gas fades out

AlGaAs GaAs

qVG

qEFM

• No oxide / insulating layer

The 2D conductive quantum well can be modulated with the gate potential.

• Use of a Schottky contact between the gate and the wide bang-gap semiconductor (n-type)

• The effective mass of GaAs is only 0.067 m0…very light electrons : Strong quantization

• The Fermi level can cross the confined ‘levels’ : Fermi Dirac Statistics (deg. semiconductor)

• 2D quantum well needs 2D density of states.
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The High Electron Mobility Transistor (HEMT)

Ground state E0 populated with nch

E0

E1
E2

AlGaAs GaAs

Assumptions: 

• The AlGaAs barrier layer is lightly doped and totally depleted

• The GaAs bulk is fully depleted in a limited volume (i.e. substrate depletion in MOSFETs)

• The discontinuity in CB creates a ‘triangular’ quantum well at the heterojunction

• CB in GaAs splits in discrete 2D levels Ei

• Ei depend on the electric field at the heterojunction, i.e. on [electron] in the well.

• The electron density in the quantum well depend on Ei , i.e. on the electric field.

Neutral beyond this limit, fully

depleted otherwise

The potential drop in the GaAs, 

surface potentials

Modeling Strategy
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The High Electron Mobility Transistor (HEMT)

E0

E1
E2

AlGaAs GaAs

s

𝐷𝐴𝑙𝐺𝑎𝐴𝑠

𝐷𝐺𝑎𝐴𝑠

Modeling Strategy: Electrostatics

𝐷𝐺𝑎𝐴𝑠  𝐷𝐴𝑙𝐺𝑎𝐴𝑠 = 𝜀𝐺𝑎𝐴𝑠𝐸𝐺𝑎𝐴𝑠  𝜀𝐴𝑙𝐺𝑎𝐴𝑠𝐸𝐴𝑙𝐺𝑎𝐴𝑠 =  𝑞𝑛𝑐ℎ

EC

• The charge neutrality : 

𝑛𝐺  𝑡𝐴𝑙𝐺𝑎𝐴𝑠 𝑁𝐷  𝑡𝐷𝑒𝑝𝑁𝐴  𝑛𝑐ℎ = 0

Charge on the gate Charge in the quantum well

𝜓1  𝜓𝑆 = 𝑉𝐺𝐵  𝜙𝐵  
Δ𝐸𝐶

𝑞

• Potential drops in the barrier and 

in the substrate:

• The discontinuity in the displacement

vector gives the surface charge 

density in the channel

1
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The High Electron Mobility Transistor (HEMT)

• Charge density in the QW

(2DOS + Fermi-Dirac)
 𝑛𝑐ℎ = 4𝜋

𝑚∗

ℎ2
𝑈𝑇 𝑙𝑛 1  𝑒𝑥𝑝

𝐸𝐹  𝐸0

𝑘𝑇
2DOS

• …but also (triangular QW) 𝐸0  𝐸𝐶 = 𝐾 𝑛𝑐ℎ
Τ3 2

E0

E1
E2

AlGaAs GaAs

s

𝐷𝐴𝑙𝐺𝑎𝐴𝑠

𝐷𝐺𝑎𝐴𝑠

EC

1

Modeling Strategy: Semiconductor physics

• The quantized levels depend on the electric

field at the interface. This will depend both

on the channel density and on the depletion

charge in GaAs

(the depletion charge in GaAs is ignored for simplicity)
3

2

3

1
2

4

3

2

3

2 















+










 n

Q

m
E

Si

Si
n

e



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The concept of charge linearization in HEMT



Jean-Michel SALLESE Slide 222

The High Electron Mobility Transistor (HEMT)

The concept of charge linearization in HEMT

𝜓𝑆 =
𝑞𝑁𝐴

2𝜀𝐴𝑙𝐺𝑎𝐴𝑠
𝑥𝑑𝑒𝑝

2• Assuming full depletion approximation, the potential drop in GaAs is : 

𝐶𝐴𝑙𝐺𝑎𝐴𝑠 =
𝜀𝐴𝑙𝐺𝑎𝐴𝑠

𝑡𝐴𝑙𝐺𝑎𝐴𝑠
The barrier capacitance is defined as 

The charge neutrality becomes

We obtain the same relationship as for the bulk MOSFET. 

The reason is that we are focusing on electrostatics …

𝑄𝑐ℎ

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
=  

𝑞𝑛𝑐ℎ

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
= 𝑉𝐺𝐵  𝑉𝐴  𝜓𝑆  

2𝑞𝜀𝐴𝑙𝐺𝑎𝐴𝑠𝑁𝐴

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
𝜓𝑆

technological parameter

 𝑄𝑐ℎ

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
= 𝑉𝐺𝐵  𝑉𝐴  𝜓𝑆  𝛾 𝜓𝑆

Note that the depleted AlGaAs barrier acts as the gate oxide in MOSFET .

𝑉𝐴 =  
𝛥𝐸𝐶

𝑞
 𝜙𝐵  

𝑞𝑁𝐷

2𝜀𝐺𝑎𝐴𝑠
𝑡𝐴𝑙𝐺𝑎𝐴𝑠
2 plays the role of the flat band voltage for MOSFETs.
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The High Electron Mobility Transistor (HEMT)

As for the Si-bulk MOSFET, we can define a pinch-off surface potential 𝜓𝑃 where the mobile 

charge density cancels, and the slope factor 𝑛𝑞

𝑄𝑐ℎ

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
= 𝑛𝑞 𝜓𝑆  𝜓𝑃

𝑛𝑞 = 1  
𝛾

2 𝜓𝑃
𝜓𝑃 = 𝑉𝐺𝐵  𝑉𝐴  𝛾2 𝑉𝐺𝐵  𝑉𝐴

𝛾2  
1

4
 

1

2

 𝑄𝑐ℎ

𝐶𝐴𝑙𝐺𝑎𝐴𝑠
= 𝑉𝐺𝐵  𝑉𝐴  𝜓𝑆  𝛾 𝜓𝑆

Linearization wrt 𝝍 
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The High Electron Mobility Transistor (HEMT)

The Charge-Voltage core relationship

The specific current IS and inversion coefficient IC

𝑈𝑇 𝑙𝑛 𝑒𝑥𝑝
𝑛𝑐ℎ

𝑈𝑇 𝐷𝑂𝑆
 1  

𝑞𝑛𝑐ℎ

𝑛𝑞 𝐶𝐴𝑙𝐺𝑎𝐴𝑠
 

𝐾

𝑞
𝑛𝑐ℎ

Τ2 3
=𝜓𝑃  𝑉

𝐼𝑆𝑝𝑒𝑐 = 2𝑛𝑞 𝐶𝐴𝑙𝐺𝑎𝐴𝑠 𝜇 𝑈𝑇
2
𝑊

𝐿

𝑖 = Τ𝐼 𝐼𝑆𝑝𝑒𝑐 = 𝑞𝑠
2  𝑞𝑠  𝑞𝐷

2  𝑞𝐷

𝑄𝑆𝑝𝑒𝑐 =  2𝑛𝑞 𝐶𝐴𝑙𝐺𝑎𝐴𝑠 𝑈𝑇 𝑞 = 𝑄/𝑄𝑆𝑝𝑒𝑐

𝐼 = 𝑞𝑛𝑐ℎ𝑊 Τ𝑑𝑉𝑐ℎ 𝑑𝑦
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The case of III-Nitride HEMT
AlGaN
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The AlGaN - HEMT

The wide band-gap semiconductors AlGaN HEMTs.

AlGaN semiconductors are large band gap and are used in power applications and optoelectronics.

Razzak, IMWS-AMP 2018), July 16-18, 2018

wurtzite

zincblende
http://gorgia.no-

ip.com/phd/html/thesis/phd

H. Ibach and H. Lueth. Solid-State Physics. Springer 2003. 

In AlGaN a piezoelectric (due to interface strain) and spontaneous (indpt of the strain) 

contributions must be included as well (depend on barrier composition)., i.e PGaN and PAlGaN

The discontinuity in the displacement vector at the surface writes now

𝐷𝐺𝑎𝑁  𝐷𝐴𝑙𝐺𝑎𝑁 = 𝜀𝐺𝑎𝑁𝐸𝐺𝑎𝑁  𝜀𝐴𝑙𝐺𝑎𝑁𝐸𝐴𝑙𝐺𝑎𝑁  𝑃𝐺𝑎𝑁  𝑃𝐴𝑙𝐺𝑎𝑁 =  𝑞𝑛𝑐ℎ
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The AlGaN - HEMT

For the same electric field discontinuity at the interface, the channel charge density will be affected

A charge density may exist at ‘flat band’, i.e. without any electric field … 

Note that 𝑃𝐺𝑎𝑁  𝑃𝐴𝑙𝐺𝑎𝑁 has no contribution to the total space charge density

𝑉𝐴 =  
𝛥𝐸𝐶

𝑞
 𝜙𝐵_𝐸𝑓𝑓  

𝑞𝑁𝐷

2𝜀𝐺𝑎𝐴𝑠
𝑡𝐴𝑙𝐺𝑎𝐴𝑠
2

𝜙𝐵_𝐸𝑓𝑓=𝜙𝐵  
𝑡𝐴𝑙𝐺𝑎𝑁

𝜀𝐴𝑙𝐺𝑎𝑁
𝑃𝐴𝑙𝐺𝑎𝑁  𝑃𝐺𝑎𝑁Polarisation can be accounted in the effective barrier parameter.

This mean that polarization will be merely a shift in VA, and so a shift in the ‘threshold voltage

These spontaneous and piezoelectric polarizations will modify the channel charge density.

Modeling AlGaN based HEMT is very similar to AlGaAs Hemts, except that AlGaN-GaN interface is

responsible for a piezoelectric-induced spontaneous polarization

This self-polarization is responsible for a ‘built-in’ channel. 

It can be taken into account through a gate voltage shift in the model developped for AlGaAs
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The AlGaN - HEMT

Some Parameters

Jazaeri and Sallese - IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 66, NO. 3,, pp. 1218 - 1229 (2019)
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◼ Ion Sensitive FETs exist for a long time.

◼ Bergveld in the 1970's

Cross section of 

an ISFET 

 Principle remains the same as for ‘regular’ FETs:

 The gate electrode is ‘removed’.

 The solution acts as a ‘liquid’ gate

 The potential at the SiO2-liquid interface may also depend on ions  present in the 

solution : this is used to sense the pH 

potential at the insulator-
electrolyte interface 

Generality on FET bio-sensors

Bergveld, IEEE Trans. on Bio-medical Engin, p. 70 (1970).

∆𝜑𝑠 =  𝐾 ∆𝑝𝐻𝑠𝑜𝑙   
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◼ Typical I-V characteristics of a MOSFET when varying the pH

A Lui et.al, Microelectronic Test 

Structures conf, 1996

 Modeling this biosensor requires :

 a double layer model that will describe the potential distribution between the 

electrolyte and the solid.

 a model that describes the adsorption of protons, the site binding model.

Generality on FET bio-sensors
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Basics of solid-electrolyte interaction
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The Site Binding Model: charge at the surface

The surface  of SiO2 gate dielectric is terminated by hydroxyl groups , OH. (i.e. silanol Si-OH)

These may act as proton donors or acceptors, depending on the electrolyte pH: Amphoteric. 

A-OH A-0
-

+  H
+

Low pH :  Ka = [A-0
-
] [H+] /  [A-OH]

Three different types of sites: neutral (A-OH), negative (A-0
-
) or positive (A-H2O

+
). 

A-OH + H
+

A-H2O
+High pH :  Kb = [A-H2O

+]  /  [A-OH] [H+]

The pH at the surface is a function of the reaction constants and charges at the surface :

[H+]2 = Ka [A-H2O
+] / Kb [A-0

-
] pHsurf = - Log [H+]  =  0.5 Log ([A-0

-
] Kb / [A-H2O

+] Ka)

If Ns is the total number of sites (per unit surface) on the oxide surface, we have:

NS = [A-H2O
+]  +  [A-O-]   +    [A-OH]

The charge distribution will depend on the pH of the solution at the electrolyte-solid interface  

Remember 𝑝𝐻 =  𝑙𝑜𝑔10 𝐻
+  
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The Site Binding Model: charge at the surface

The ‘Point of Zero Charge’ pH : pHpzc

When the surface is neutral, the pH at the surface is known as the Point of Zero Charge pH :

[A-H2O
+] = [A-0-] [H+]2 = Ka / Kb                                   pHpzc = - log [H+]  =  0.5 log(Kb / Ka)

pHpzc is a characteristic of the oxide . It doesn’t depend on the surface sites density Ns

The net charge density at the surface is given by (q>0)  =  - q ( [A-0- ] - [A-H2O
+ ] )

So,  depends on the concentration of protons [H+] at the surface.

 𝐴  𝐻2𝑂
+ = 𝑁𝑠

𝐾𝑏  𝐻
+ 2

𝐾𝑎 +  𝐻+ + 𝐾𝑏  𝐻
+ 2

 

 𝐴  𝑂  = 𝑁𝑠

𝐾𝑎

𝐾𝑎 +  𝐻+ + 𝐾𝑏  𝐻
+ 2

 

σ =   𝑞 𝑁𝑠

𝐾𝑎  𝐾𝑏  𝐻
+ 2

𝐾𝑎 +  𝐻+ + 𝐾𝑏  𝐻
+ 2

 

The surface stores charges as result of a change in H+ concentration at the surface
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The Site Binding Model: charge at the surface

At high pH (low [H+]) : σ ≅   𝑞 𝑁𝑠  

At low pH (high [H+]) : σ ≅ 𝑞 𝑁𝑠 

Rough estimation of the surface charge

The variation of the surface charge it 2qNS at the most ... 

Raiteri et. al. Sensors and 

Actuators B 46 (1998) 126–132

The surface charge can change sign

Jean-Michel Sallese EPFL
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Modeling electrolyte-solid interface potential

The charge stored on the solid surface will generate a potential in the liquid

The electrolyte contains anions and cathions

The charge in the electrolyte is accompanied with a variation in the electrostatic potential (x) .

We can use Boltzman statistics to link the local charge density with the local potential .

Implications of the surface charge density:

The charge stored on the insulator-liquid interface must be compensated by a charge in the 

liquid…or somewhere else … 

Surface 

charges

0

‘liquid’ charges

0iff

Potential

0Solid Electrolyte
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Modeling electrolyte-solid interface potential

Barz et. al.

Lab Chip, 2005, 5, 949–958

Later Gouy-Chapman proposed a more 

elaborated theory.

The rearrangement of the charges takes 

place in a finite thickness, just as for the 

depletion charge in a MOSFET channel 

that coexists with the inversion layer (if 

any): the diffusion layer

Initially, Helmholtz proposed that the opposite charge in the electrolyte is a sheet layer, a monolayer 

of opposite polarity, separated by a distance of molecular order..

𝐶𝐻𝑒𝑙𝑚 =
𝜀

𝑑𝑚𝑜𝑙
  The capacitance would then be

Experimentally, this was proven to be wrong (it

predicts a potential independent capacitance)

‘Helmoltz layer’ = ‘frozen ions’

‘constant’ series capacitance

Diffusion layer (varying

capacitance)

𝝋𝒅𝒊𝒇𝒇
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Outer Helmoltz

Plane OHP

Inner Helmoltz

Plane IHP

d

x
0

R 𝑙tox  
c)

S
em

ic
o
nd

u
ct

o
r

Ions with the same sign wrt the charge on the oxide 

surface will be repelled, creating a diffusion layer in 

the electrolyte (beyond OHP).  

For each surface-electrolyte system, there is a unique 

correspondence between the pH in the electrolyte and 

the charge density at the oxide-electrolyte interface. 

Modeling electrolyte-solid interface potential

ions adsorbed due to chemical interactions 

(before IHP)

‘partially solvated ions
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Modeling electrolyte-solid interface potential

𝑑 𝜑2

𝑑𝑥2
=

𝑞

𝜀
𝐶𝑠𝑜𝑙  𝑒

𝑧
𝜑
𝑈𝑇  𝑒

 𝑧
𝜑
𝑈𝑇   

In presence of ion species i having a charge zi , the Poisson Boltzmann equation reads: (and the 

concentration at equilibrium in the solution is Csol, .)

The Gouy Chapman model

𝜎𝑑𝑖𝑓𝑓 =   8𝑞𝑈𝑇𝜀𝐶𝑆𝑜𝑙  𝑠𝑖𝑛ℎ  
𝑧𝜑𝑑𝑖𝑓𝑓

2𝑈𝑇
  

The limit conditions are the same as for bulk MOSFET:

Electric field cancel at infinity, as for the potential (much simpler than in a DG FET) .

Then, in the diffusion layer, the charge stored depends on the potential drop as:

𝑑 𝜑2

𝑑𝑥2
=

𝑞

𝜀
 𝐶𝑠𝑜𝑙 𝑖  𝑧𝑖  𝑒

𝑧𝑖
𝜑
𝑈𝑇   

Assuming that the charge on ions is +/- zq (1:1 electrolyte):

Depending on the  nature and concentration of ions present in the solution, this surface 

charge  creates an  electrostatic potential 

(note that this kind of assymetry in charge-

vs-potential is possible because all the 

charges are ‘mobile…not as in MOSFETs
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Modeling electrolyte-solid interface potential

In case of a small potential drop:

𝜑 = 𝜑0 𝑒
 

𝑥
𝜆𝐷   

𝜆𝐷 =  
𝜖𝑈𝑇

2𝐶𝑧2𝑞
 

Normalized potential profile in 10-2 M aqueous solution 

of a 1: 1 electrolyte at 25°C. D = 3 nm.

Concentration D (nm)

1 0.3

10-1 0.96

10-2 3

10-3 9.6

10-4 30

Still, the model is insufficient as it predicts a larger capacitance 

than what gives experiment. Is some fixed ‘Stern’ layer missing ? 

… very small screening distances…

Bard & Faulkner, Wiley, 2001, pp. 548

𝐶𝐷 = 𝑑𝜎 𝑑𝜑Τ  
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Modeling electrolyte-solid interface potential

The Gouy–Chapman–Stern Model:

𝐶𝑇𝑜𝑡𝑎𝑙
 1 = 𝐶𝐻𝑒𝑙𝑚

 1   + 𝐶𝐺𝑜𝑢𝑦
 1  

The idea is to add a series capacitance to the diffusion capacitance of the Gouy-Chapman.

Beyond this ‘outer Helmotz plane’, we can create 

an implicit link between Charges and Potentials.

The Helmoltz layer is a kind of 2D dipole with 

respect to the charge sheet on the solid: the 

electric field is constant and the potential drops 

linearly. 

The potential in the Gouy –Chapman model is 

then the potential at the ‘exit’ of this Helmoltz layer

A combination of the Helmholtz layer in series with the Gouy–Chapman Model .

‘Helmoltz layer’ = ‘frozen ions’

‘linear pot. drop’

Diffusion layer (varying capacitance)

𝜎𝑑𝑖𝑓𝑓 =   8𝑞𝑈𝑇𝜀𝐶𝑆𝑜𝑙  𝑠𝑖𝑛ℎ 
𝑧  𝜑𝑑𝑖𝑓𝑓 +

𝜎𝑑𝑖𝑓𝑓

𝐶𝐻𝑒𝑙𝑚
 

2𝑈𝑇
  

𝝋𝒅𝒊𝒇𝒇

𝛷𝑯 𝒍
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pH at surface vs pH in the electrolyte

𝑝𝐻𝑠𝑢𝑟𝑓 =  𝑝𝐻𝑠𝑜𝑙 +
𝜑0

2.3𝑈𝑇
 

The electrostatic potential links the concentration of protons  between the surface and the 

liquid, and so the pH at the surface will not be the same as in the  ‘neutral’ electrolyte .

 𝐻𝑠𝑢𝑟𝑓  =   𝐻𝑠𝑜𝑙   𝑒
 𝜑0
𝑈𝑇  

𝜎0 =   𝜎diff =  𝑞 𝑁𝑠

𝐾𝑎  𝐾𝑏  𝐻
+ 2

𝐾𝑎 +  𝐻+ + 𝐾𝑏  𝐻
+ 2

 But….

And ….

The steady state solution will have to be solved self-consistently.

0, pHsol pHsurf 

Diff0

pHsol

𝜎𝑑𝑖𝑓𝑓 =   8𝑞𝑈𝑇𝜀𝐶𝑆𝑜𝑙  𝑠𝑖𝑛ℎ 
𝑧  𝜑𝑑𝑖𝑓𝑓 +

𝜎𝑑𝑖𝑓𝑓

𝐶𝐻𝑒𝑙𝑚
 

2𝑈𝑇
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Estimation of the theoretical sensitivity

𝑑𝜑0

𝑑 𝑝𝐻𝑠𝑜𝑙
=  

𝑑𝜑0

𝑑 𝜎
 

𝑑 𝜎

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓

𝑑 𝑝𝐻𝑠𝑜𝑙
 

0 a 1 . Depends on the intrinsic buffer capacity of the surface (which is also a function of the 

pH) and  on the capacitance. 

The sensitivity of the FET will depend on the link between the surface 

potential at the liquid-solid interface, and the pH of the solution: 

𝑑𝜎

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓
=    𝛽𝑞 

𝑑𝜑0

𝑑 𝑝𝐻𝑠𝑜𝑙
=  

 𝛽𝑞

𝐶𝑇
   

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓

𝑑 𝑝𝐻𝑠𝑜𝑙
 

𝑑𝜑0

𝑑 𝑝𝐻𝑠𝑜𝑙
=   𝑈𝑇  𝛼  𝛼 =

1

1 + 2.3 
𝑈𝑇

𝑞𝛽
  𝐶𝑇  

 

𝑑𝜑0 𝑑 𝑝𝐻𝑠𝑜𝑙Τ  

 is intrinsic buffer capacity …will be detailed later

With
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The intrinsic buffer capacity

𝛽 =
𝑑   

𝜎
𝑞 

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓
=

𝑑  𝐴  𝑂    𝐴  𝐻2𝑂
+  

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓
 

The ability of the surface to store charge as result of a change in the H+ concentration at the 

surface is given by the intrinsic buffer capacity  .

It links the variation in the number of charged groups, i.e. the variation in , to the variation of the 

pH at the surface :

 𝑞𝛽 =
𝑑 𝜎 

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓
=

𝑑 𝜎 

𝑑 𝐻+ 

𝑑 𝐻+ 

𝑑 𝑝𝐻𝑠𝑢𝑟𝑓
= 

 𝑞 𝑁𝑠

𝐾𝑏  𝐻
+ 2 + 4𝐾𝑎𝐾𝑏  𝐻

+ + 𝐾𝑎𝐾𝑏
2

 𝐾𝑎𝐾𝑏 + 𝐾𝑏  𝐻
+ +  𝐻+ 2 

2 2.3 𝐻+  

R.E. G. Huan Hal et al.I Adu. Colloid 

Interface Sci. 68 (1996) 31-62
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Some orders of magnitude

10-2 M

Ta20  based ISFETs vs pH in 

(a) 0.1 M, 

(b), 0.01 M 

(c) 0.001 M 

electrolyte

Bard & Faulkner, Wiley, 2001, pp. 548

R.E. G. Huan Hal et al.I Adu. Colloid 

Interface Sci. 68 (1996) 31-62
𝛼 =

1

1 + 2.3 
𝑈𝑇

𝑞𝛽
  𝐶𝑇  
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Modeling ISFET Nanowires
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The model must treat on the same ground the 

electrostatics of the semiconductor, the 

electrolyte and the surface chemical reaction.

With respect to the former analysis, we must now 

also take into account the channel charge density 

within the charge neutrality condition…

.. And this charge varies along the channel ….

Likewise a conventional JL FET with gate electrodes 

replaced by the electrolyte.

BUT 

the effective ‘gate voltage’ will depend on the physico-

chemical properties of the electrolyte and surface affinity 

to protons (i.e. pH).

Modeling DG JL-ISFET
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𝑄𝑑𝑖𝑓𝑓_𝑒𝑙 = 2𝜀1𝜀𝑜
𝑈𝑇

𝑙𝐷
sinh 

𝛷𝑒𝑙

2 𝑈𝑇
 

The charge on the oxide surface 𝑄𝑠𝑜 depends on the pH (𝛷𝑜𝑥 is the potential in the

electrolyte)

𝑙𝑛 10 𝑝𝐻𝑧𝑝𝑐  𝑝𝐻 =
𝛷𝑜𝑥

𝑈𝑇
 𝑎𝑟𝑐𝑠𝑖𝑛ℎ

𝑄𝑠𝑜

𝑞𝑁𝑠𝛿

𝑙𝐷 = 𝜀1𝜀𝑜 𝑈𝑇/2𝑞𝑛𝑜
1/2 is the Debye screening length of the electrolyte and 𝑛𝑜 is the

concentration of ions per unit volume in the solution.

The charge in the Helmholtz layer depends on 𝛷𝑒𝑙 , i.e. the potential drop with respect to the

neutral electrolyte.

QSC the total charge density in the semiconductor

𝑄𝑠𝑐  2 𝑄𝑠_𝑜  𝑄𝑑𝑖𝑓𝑓_𝑒𝑙
 = 0Charge neutrality

Modeling DG JL-ISFET
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Step 1

 

YoGiven

½ JL FET Electrolyte

Modeling DG JL-ISFET

Step 2

𝜓𝑠 =
𝑞𝑇𝑆𝑖

2

8 𝜀𝑠𝑖
𝑛𝑖 𝑒𝑥𝑝

𝜓0−𝑉

𝑈𝑇
 𝑁𝐷  𝜓0, 

 

Link between surface and center 

potentials (non-full depletion appr.)
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Step 3 𝜓𝑠  𝐸𝑠tox

Surface electric 

field known as 

well.

 

 

Step 4 Charge density per unit area in the 

electrolyte (𝑄𝑠_𝑜 bonded on the oxide 

surface and (diffusion charge) vs ox

and pH in bulk.

Modeling DG JL-ISFET
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Modeling DG JL-ISFET

Step 5

 

Continuity of the electric field 

at the oxide-electrolyte 

interface

 

Step 6
Back to step 4 until charge 

neutrality is satisfied

VG

If charge neutrality 

satisfied for the entire 

device
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Modeling the Nanowire ISFET

A correspondence in terms of equivalent parameters was already proposed for the nanowire JL FET

In case of nanowire JL ISFET, the electrolyte is also ‘cylindrical’.

Satisfies the Poisson Boltzmann equation in cylindrical coordinates:

𝑑

𝑑𝑟

𝑑 𝛷

𝑑𝑟
 

1

𝑟

𝑑 𝛷

𝑑𝑟
= 𝜂 𝑠𝑖𝑛ℎ

𝛷

𝑈𝑇

We use a ‘trapezoidal’ integration from r=0 to 3 ld:

𝒍𝑫
∗ = 𝒍𝑫

𝑹∗  𝟑𝒍𝑫
𝑹∗

න
𝑅∗

𝑅∗+𝑙 1

2

𝑑

𝑑𝑟

𝑑 𝛷

𝑑𝑟

2

𝑑𝑟  න
𝑅∗

𝑅∗+𝑙 1

𝑟

𝑑 𝛷

𝑑𝑟

2

𝑑𝑟 = 𝜂 න
𝑅∗

𝑅∗+𝑙

ቇ
𝑑 𝛷

𝑑𝑟
∙ sinh Τ𝛷 𝑈𝑇 𝑑𝑟

We obtain the same relation as for the DG but 𝑙𝐷 is now replaced with  an 
Equivalent Debye length in cylindrical shape.
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Modeling the Nanowire ISFET

As for the semiconductor, the electrolyte in cylindrical geometry can be modelled as a 
planar one with equivalent parameter:

 

Equivalent parameters of NW JL ISFET in terms of  DG JL ISFET 

Physical parameters DG JL  
IS FET 

NW JL IS FET 

NW radius - R 

Semiconductor thickness Tsc Tsc
* = 2×R 

Semiconductor width W W* = π×R 

Doping concentration ND ND
*= ND/2 

Intrensic carrier concentration    ni ni
*= ni/2 

Oxide thickness   tox tox
* = R (ln(1+ tox/ R) 

Stern layer thickness    d            d * = 

              =(R+tox)ln[1+d/(R+ tox)] 

Diffuse layer thickness    lD lD
*= lD [ (R*+ lD)/ R*]1/2 

where R*= R+tox+d, =3 
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Simulations of ISFET Nanowires
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Oxide surface potential and relative change in the conductivity upon pH (VDS=10mV) 

for different gate voltages. 

Simulations: DG JL ISFET 
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Simulations: Nanowire JL ISFET 
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Simulations: DG JL ISFET 

Linear regime (VG=1V ) and in nearly saturation regime (VG=0V), VDS=0.1V 
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Simulations: DG JL ISFET 

Derivative of the oxide surface potential and 

normalized charge density versus pH 

normalized to 𝑄𝑑 = 𝑞𝑁𝐷𝑇𝑆𝑖


